966 resultados para Swash zone sediment transport
Resumo:
The Clarion-Clipperton Fracture Zone (CCFZ) in the Pacific Ocean is characterized by organic carbon-starved sediments and meter-scale oxygen penetration into the sediment. Furthermore, numerous seamounts occur throughout its deep-sea plain, which may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. Recent studies in deep-sea environments of the Pacific and Atlantic Oceans have suggested and presented evidence of an exchange of dissolved constituents between the seawater flowing in the basaltic crust and the pore water of the overlying sediments. Through high-resolution pore-water oxygen and nutrient measurements, we examined fluxes and geochemical interactions between the seamount basaltic basement and pore waters of the overlying sediments at three sites located on a radial transect from the foot of Teddy Bare, a small seamount in the CCFZ. At three sites, located 1000, 700 and 400 m away from the foot of the seamount, we found that oxygen concentrations initially decrease with sediment depth but start to increase at depths of 3 and 7 m towards the basaltic basement. NO32- concentrations mirror the oxygen concentration profiles, as they increase with sediment depth but decrease towards the basement. We performed transport reaction modeling and determined at one site the 87Sr/86Sr ratio of the pore water and the bottom water overlying the sediments, which indicated that the 87Sr/86Sr ratio of the pore water at the bottom of the sediment column is similar to the seawater Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement outpaces the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the upper sediment and the overlying bottom water. Our results suggest an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. The oxygen profiles presented here represent the first of their kind ever measured in the Pacific Ocean, as they indicate an upward flux of molecular oxygen from a basaltic aquifer, something that has so far only been documented - at one other location worldwide - the North Pond site in the Atlantic Ocean. We show that the diffusion of oxygen from the seamount basaltic basement into the overlying pore waters affects the preservation of organic compounds and helps to maintain a completely oxygenated sedimentary column at all 3 sites near the seamount.
Resumo:
Micropaleontological and biomarker data from two high-accumulation marine sites from the Coastal and Continental Shelf Zone (CCSZ) off East Antarctica (Adélie Land at w140°E and eastern Prydz Bay at w77°E) are used to reconstruct Holocene changes in sea ice and wind stress at the basin-wide scale. These data demonstrate congruent increase in sea-ice concentration/persistence and wind stress-related sea-surface turbulence in the two regions since 7 cal ka BP, with a particularly strong signal since 4.5 - 3.5 cal ka BP. Comparison of these high latitude records with sea ice and turbulence records from the southern mid-latitudes highlights distinctive climatic evolutions according to the different latitudinal bands. Sea-ice persistence and turbulence increase in East Antarctica CCSZ are opposite to sea-surface warming and sea-ice retreat recorded after 4.5 - 3.5 cal ka BP in the East Atlantic and Indian sector between 55 and 45°S. At the same period, paleodata suggest SST cooling in all major coastal upwelling systems of the southern hemisphere, caused by the northward transport of subpolar surface waters as a response to southern Westerlies reinforcement. We therefore propose, as suggested for the northern hemisphere, that Holocene changes in the latitudinal insolation gradient, primarily forced by obliquity and precession and amplified by sea-ice and glacial-ice expansions in the Antarctic realm, are responsible for the observed contrasted latitudinal patterns of southern latitudes.
Resumo:
This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.
Resumo:
Here, we present bulk organic geochemical data from a spatial grid of surface samples from the western Barents Sea region. The results show that the distribution of organic carbon in surface sediments is predominantly controlled by input from land-derived terrigenous and in-situ produced marine organic matter. Inferred from various nitrogenous fractions and stable isotopes of bulk organic carbon we show that the spatial distribution of terrigenous organic carbon is independent of water depth, organic carbon mineralization and variable sedimentation rates. Instead, the pattern is predominantly controlled by sea ice-induced lateral transport and subsequent release in the Marginal Ice Zone (MIZ) as well as the distance to shore. Consistent with the observation of high vertical flux of particulate organic material in the MIZ, are amounts of marine organic carbon significantly enhanced in sediments below the winter ice margin. This is in accordance with modern observations suggesting that Arctic shelves with seasonal ice zones can be hot spots of vertical carbon export and thus a potential CO2 sink.
Resumo:
A reconstruction of northwest African summer monsoon strength during the cold marine isotopic stage (MIS) 6 indicates a link to the seasonal migration of the Intertropical Convergence Zone (ITCZ). High-resolution studies of eolian dust supply and sea surface temperature recorded in marine core MD03-2705, on the Mauritanian margin, provide a better understanding about the penultimate glacial history of northwestern African aridity/humidity and upwelling coastal activity. Today, site MD03-2705 experiences increased upwelling and dust flux during the winter months, when the ITCZ is in a southerly position. Analyses of foraminifera isotopic composition suggest that during MIS 6.5 (180-168 ka) the average position of the ITCZ migrated north, marked by an increase in the strength of the summer monsoon, which decreased eolian dust transport and the coastal upwelling activity. The northward migration is in phase with a specific orbital combination of a low precessional index with a high obliquity signal. High-resolution analysis of stable isotopes (d18O and d13C) and microscale resolution geochemical (Ti/Al and quartz grain counts) determinations reveal that the transition between monsoonal humid (MIS 6.5) and dry (MIS 6.4) conditions has occurred in less than 1.3 ka. Such rapid changes suggest a nonlinear link between the African monsoonal rainfall system and environmental changes over the continent. This study provides new insights about the influence of vegetation and oceanic temperature feedbacks on the onset of African summer monsoon and demonstrates that, during the penultimate glacial period, changes in tropical dynamics had regional and global impacts.