941 resultados para Surface and interfaces
Resumo:
This thesis entitled “Studies on Nitrifying Microorganisms in Cochin Estuary and Adjacent Coastal Waters” reports for the first time the spatial andtemporal variations in the abundance and activity of nitrifiers (Ammonia oxidizingbacteria-AOB; Nitrite oxidizing bacteria- NOB and Ammonia oxidizing archaea-AOA) from the Cochin Estuary (CE), a monsoon driven, nutrient rich tropicalestuary along the southwest coast of India. To fulfil the above objectives, field observations were carried out for aperiod of one year (2011) in the CE. Surface (1 m below surface) and near-bottomwater samples were collected from four locations (stations 1 to 3 in estuary and 4 in coastal region), covering pre-monsoon, monsoon and post-monsoon seasons. Station 1 is a low saline station (salinity range 0-10) with high freshwater influx While stations 2 and 3 are intermediately saline stations (salinity ranges 10-25). Station 4 is located ~20 km away from station 3 with least influence of fresh water and is considered as high saline (salinity range 25- 35) station. Ambient physicochemical parameters like temperature, pH, salinity, dissolved oxygen (DO), Ammonium, nitrite, nitrate, phosphate and silicate of surface and bottom waters were measured using standard techniques. Abundance of Eubacteria, total Archaea and ammonia and nitrite oxidizing bacteria (AOB and NOB) were quantified using Fluorescent in situ Hybridization (FISH) with oligonucleotide probes labeled withCy3. Community structure of AOB and AOA was studied using PCR Denaturing Gradient Gel Electrophoresis (DGGE) technique. PCR products were cloned and sequenced to determine approximate phylogenetic affiliations. Nitrification rate in the water samples were analyzed using chemical NaClO3 (inhibitor of nitrite oxidation), and ATU (inhibitor of ammonium oxidation). Contribution of AOA and AOB in ammonia oxidation process was measured based on the recovered ammonia oxidation rate. The contribution of AOB and AOA were analyzed after inhibiting the activities of AOB and AOA separately using specific protein inhibitors. To understand the factors influencing or controlling nitrification, various statistical tools were used viz. Karl Pearson’s correlation (to find out the relationship between environmental parameters, bacterial abundance and activity), three-way ANOVA (to find out the significant variation between observations), Canonical Discriminant Analysis (CDA) (for the discrimination of stations based on observations), Multivariate statistics, Principal components analysis (PCA) and Step up multiple regression model (SMRM) (First order interaction effects were applied to determine the significantly contributing biological and environmental parameters to the numerical abundance of nitrifiers). In the CE, nitrification is modulated by the complex interplay between different nitrifiers and environmental variables which in turn is dictated by various hydrodynamic characteristics like fresh water discharge and seawater influx brought in by river water discharge and flushing. AOB in the CE are more adapted to varying environmental conditions compared to AOA though the diversity of AOA is higher than AOB. The abundance and seasonality of AOB and NOB is influenced by the concentration of ammonia in the water column. AOB are the major players in modulating ammonia oxidation process in the water column of CE. The distribution pattern and seasonality of AOB and NOB in the CE suggest that these organisms coexist, and are responsible for modulating the entire nitrification process in the estuary. This process is fuelled by the cross feeding among different nitrifiers, which in turn is dictated by nutrient levels especially ammonia. Though nitrification modulates the increasing anthropogenic ammonia concentration the anthropogenic inputs have to be controlled to prevent eutrophication and associated environmental changes.
Resumo:
A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.
Resumo:
We have discovered that the current protocols to assemble Au nanoparticles based on DNA hybridization do not work well with the small metal nanoparticles (e.g. 5 nm Au, 3.6 nm Pt and 3.2 nm Ru particles). Further investigations revealed the presence of strong interaction between the oligonucleotide backbone and the surface of the small metal nanoparticles. The oligonucleotides in this case are recumbent on the particle surface and are therefore not optimally oriented for hybridization. The nonspecific adsorption of oligonucleotides on small metal nanoparticles must be overcome before DNA hybridization can be accepted as a general assembly method. Two methods have been suggested as possible solutions to this problem. One is based on the use of stabilizer molecules which compete with the oligonucleotides for adsorption on the metal nanoparticle surface. Unfortunately, the reported success of this approach in small Au nanoparticles (using K₂BSPP) and Au films (using 6-mercapto-1-hexanol) could not be extended to the assembly of Pt and Ru nanoparticles by DNA hybridization. The second approach is to simply use larger metal particles. Indeed most reports on the DNA hybridization induced assembly of Au nanoparticles have made use of relatively large particles (>10 nm), hinting at a weaker non-specific interaction between the oligonucleotides and large Au nanoparticles. However, most current methods of nanoparticle synthesis are optimized to produce metal nanoparticles only within a narrow size range. We find that core-shell nanoparticles formed by the seeded growth method may be used to artificially enlarge the size of the metal particles to reduce the nonspecific binding of oligonucleotides. We demonstrate herein a core-shell assisted growth method to assemble Pt and Ru nanoparticles by DNA hybridization. This method involves firstly synthesizing approximately 16 nm core-shell Ag-Pt and 21 nm core-shell Au-Ru nanoparticles from 9.6 nm Ag seeds and 17.2 nm Au seeds respectively by the seed-mediated growth method. The core-shell nanoparticles were then functionalized by complementary thiolated oligonucleotides followed by aging in 0.2 M PBS buffer for 6 hours. The DNA hybridization induced bimetallic assembly of Pt and Ru nanoparticles could then be carried out in 0.3 M PBS buffer for 10 hours.
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
This thesis deals with the so-called Basis Set Superposition Error (BSSE) from both a methodological and a practical point of view. The purpose of the present thesis is twofold: (a) to contribute step ahead in the correct characterization of weakly bound complexes and, (b) to shed light the understanding of the actual implications of the basis set extension effects in the ab intio calculations and contribute to the BSSE debate. The existing BSSE-correction procedures are deeply analyzed, compared, validated and, if necessary, improved. A new interpretation of the counterpoise (CP) method is used in order to define counterpoise-corrected descriptions of the molecular complexes. This novel point of view allows for a study of the BSSE-effects not only in the interaction energy but also on the potential energy surface and, in general, in any property derived from the molecular energy and its derivatives A program has been developed for the calculation of CP-corrected geometry optimizations and vibrational frequencies, also using several counterpoise schemes for the case of molecular clusters. The method has also been implemented in Gaussian98 revA10 package. The Chemical Hamiltonian Approach (CHA) methodology has been also implemented at the RHF and UHF levels of theory for an arbitrary number interacting systems using an algorithm based on block-diagonal matrices. Along with the methodological development, the effects of the BSSE on the properties of molecular complexes have been discussed in detail. The CP and CHA methodologies are used for the determination of BSSE-corrected molecular complexes properties related to the Potential Energy Surfaces and molecular wavefunction, respectively. First, the behaviour of both BSSE-correction schemes are systematically compared at different levels of theory and basis sets for a number of hydrogen-bonded complexes. The Complete Basis Set (CBS) limit of both uncorrected and CP-corrected molecular properties like stabilization energies and intermolecular distances has also been determined, showing the capital importance of the BSSE correction. Several controversial topics of the BSSE correction are addressed as well. The application of the counterpoise method is applied to internal rotational barriers. The importance of the nuclear relaxation term is also pointed out. The viability of the CP method for dealing with charged complexes and the BSSE effects on the double-well PES blue-shifted hydrogen bonds is also studied in detail. In the case of the molecular clusters the effect of high-order BSSE effects introduced with the hierarchical counterpoise scheme is also determined. The effect of the BSSE on the electron density-related properties is also addressed. The first-order electron density obtained with the CHA/F and CHA/DFT methodologies was used to assess, both graphically and numerically, the redistribution of the charge density upon BSSE-correction. Several tools like the Atoms in Molecules topologycal analysis, density difference maps, Quantum Molecular Similarity, and Chemical Energy Component Analysis were used to deeply analyze, for the first time, the BSSE effects on the electron density of several hydrogen bonded complexes of increasing size. The indirect effect of the BSSE on intermolecular perturbation theory results is also pointed out It is shown that for a BSSE-free SAPT study of hydrogen fluoride clusters, the use of a counterpoise-corrected PES is essential in order to determine the proper molecular geometry to perform the SAPT analysis.
Resumo:
Reanalysis data obtained from data assimilation are increasingly used for diagnostic studies of the general circulation of the atmosphere, for the validation of modelling experiments and for estimating energy and water fluxes between the Earth surface and the atmosphere. Because fluxes are not specifically observed, but determined by the data assimilation system, they are not only influenced by the utilized observations but also by model physics and dynamics and by the assimilation method. In order to better understand the relative importance of humidity observations for the determination of the hydrological cycle, in this paper we describe an assimilation experiment using the ERA40 reanalysis system where all humidity data have been excluded from the observational data base. The surprising result is that the model, driven by the time evolution of wind, temperature and surface pressure, is able to almost completely reconstitute the large-scale hydrological cycle of the control assimilation without the use of any humidity data. In addition, analysis of the individual weather systems in the extratropics and tropics using an objective feature tracking analysis indicates that the humidity data have very little impact on these systems. We include a discussion of these results and possible consequences for the way moisture information is assimilated, as well as the potential consequences for the design of observing systems for climate monitoring. It is further suggested, with support from a simple assimilation study with another model, that model physics and dynamics play a decisive role for the hydrological cycle, stressing the need to better understand these aspects of model parametrization. .
Resumo:
A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.
Resumo:
A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.
Resumo:
An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.
Resumo:
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.
Resumo:
We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.
Resumo:
Noncovalent interactions play key roles in many natural processes leading to the self-assembly of molecules with the formation of supramolecular structures. One of the most important forces responsible for self-assembly is hydrogen bonding, which also plays an important role in the self-assembly of synthetic polymers in aqueous solutions. Proton-accepting polymers can associate with proton-donating polymers via hydrogen bonding in aqueous solutions and form polymer-polymer or interpolymer complexes. There has been an increased interest among researchers in hydrogen-bonded interpolymer complexes since the first pioneering papers were published in the early 1960s. Several hundred research papers have been published on various aspects of complex formation reactions in solutions and interfaces, properties of interpolymer complexes and their potential applications. This book focuses on the latest developments in the area of interpolymer complexation via hydrogen bonding. It represents a collection of original and review articles written by recognized experts from Germany, Greece, Kazakhstan, Poland, Romania, Russia, UK, Ukraine, and the USA. It highlights many important applications of interpolymer complexes, including the stabilization of colloidal systems, pharmaceuticals, and nanomaterials.
Resumo:
Many lowland rivers across northwest Europe exhibit broadly similar behavioural responses to glacial-interglacial transitions and landscape development. Difficulties exist in assessing these, largely because the evidence from many rivers remains limited and fragmentary. Here we address this issue in the context of the river Kennet, a tributary of the Thames, since c. 13,000 cal BP. Some similarities with other rivers are present, suggesting that regional climatic shifts are important controls. The Kennet differs from the regional pattern in a number of ways. The rate of response to sudden climatic change, particularly at the start of the Holocene and also mid-Holocene forest clearance, appears very high. This may reflect abrupt shifts between two catchment scale hydrological states arising from contemporary climates, land use change and geology. Stadial hydrology is dominated by nival regimes, with limited winter infiltration and high spring and summer runoff. Under an interglacial climate, infiltration is more significant. The probable absence of permafrost in the catchment means that a lag between the two states due to its gradual decay is unlikely. Palaeoecology, supported by radiocarbon dates, suggests that, at the very start of the Holocene, a dramatic episode of fine sediment deposition across most of the valley floor occurred, lasting 500-1000 years. A phase of peat accumulation followed as mineral sediment supply declined. A further shift led to tufa deposition, initially in small pools, then across the whole floodplain area, with the river flowing through channels cut in tufa and experiencing repeated avulsion. Major floods, leaving large gravel bars that still form positive relief features on the floodplain, followed mid-Holocene floodplain stability. Prehistoric deforestation is likely to be the cause of this flooding, inducing a major environmental shift with significantly increased surface runoff. Since the Bronze Age, predominantly fine sediments were deposited along the valley with apparently stable channels and vertical floodplain accretion associated with soil erosion and less catastrophic flooding. The Kennet demonstrates that, while a general pattern of river behaviour over time, within a region, may be identifiable, individual rivers are likely to diverge from this. Consequently, it is essential to understand catchment controls, particularly the relative significance of surface and subsurface hydrology. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Large temperature variations on land, in the air, and at the ocean surface, and highly variable flux of ice-rafted debris (IRD) delivered to the North Atlantic Ocean show that rapid climate fluctuations took place during the last glacial period. These quasi-periodic, high-amplitude climate variations followed a sequence of events recognized as a rapid warming, followed by a phase of gradual cooling, and terminating with more rapid cooling and increased flux of IRD to the north Atlantic Ocean. Each cycle lasted ˜1500 years, and was followed by an almost identical sequence. These cycles are referred to as Dansgaard/Oechger cycles (D/O cycles), and approximately every fourth cycle culminated in a more pronounced cooling with a massive discharge of IRD into the north Atlantic Ocean over an interval of ˜500 years. These massive discharges of IRD are known as Heinrich layers. “Heinrich events” are thus characterized as a rapid transfer of IRD from a “source,” the bed of the Laurentide Ice Sheet (LIS), to a “sink,” the North Atlantic.
Resumo:
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling toot for simulating the time-dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in-stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in-stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l(-1). The general trends in the in-stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l(-1)) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in-stream generation, storage and release of the fine sediment fraction. The in-stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright (c) 2007 John Wiley & Sons, Ltd.