932 resultados para Subgrid Scale Model
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The GEFSOC Project developed a system for estimating soil carbon (C) stocks and changes at the national and sub-national scale. As part of the development of the system, the Century ecosystem model was evaluated for its ability to simulate soil organic C (SOC) changes in environmental conditions in the Indo-Gangetic Plains, India (IGP). Two long-term fertilizer trials (LTFT), with all necessary parameters needed to run Century, were used for this purpose: a jute (Corchorus capsularis L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) trial at Barrackpore, West Bengal, and a rice-wheat trial at Ludhiana, Punjab. The trials represent two contrasting climates of the IGP, viz. semi-arid, dry with mean annual rainfall (MAR) of < 800 mm and humid with > 1600 turn. Both trials involved several different treatments with different organic and inorganic fertilizer inputs. In general, the model tended to overestimate treatment effects by approximately 15%. At the semi-arid site, modelled data simulated actual data reasonably well for all treatments, with the control and chemical N + farm yard manure showing the best agreement (RMSE = 7). At the humid site, Century performed less well. This could have been due to a range of factors including site history. During the study, Century was calibrated to simulate crop yields for the two sites considered using data from across the Indian IGP. However, further adjustments may improve model performance at these sites and others in the IGP. The availability of more longterm experimental data sets (especially those involving flooded lowland rice and triple cropping systems from the IGP) for testing and validation is critical to the application of the model's predictive capabilities for this area of the Indian sub-continent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this three year project funded by the Countryside Council for Wales (CCW) is to develop techniques firstly, to refine and update existing targets for habitat restoration and re-creation at the landscape scale and secondly, to develop a GIS-based model for the implementation of those targets at the local scale. Landscape Character Assessment (LCA) is being used to map Landscape Types across the whole of Wales as the first stage towards setting strategic habitat targets. The GIS habitat model uses data from the digital Phase I Habitat Survey for Wales to determine the suitability of individual sites for restoration to specific habitat types, including broadleaf woodland. The long-term aim is to develop a system that strengthens the character of Welsh landscapes and provides real biodiversity benefits based upon realistic targets given limited resources for habitat restoration and re-creation.
Resumo:
The Phosphorus Indicators Tool provides a catchment-scale estimation of diffuse phosphorus (P) loss from agricultural land to surface waters using the most appropriate indicators of P loss. The Tool provides a framework that may be applied across the UK to estimate P loss, which is sensitive not only to land use and management but also to environmental factors such as climate, soil type and topography. The model complexity incorporated in the P Indicators Tool has been adapted to the level of detail in the available data and the need to reflect the impact of changes in agriculture. Currently, the Tool runs on an annual timestep and at a 1 km(2) grid scale. We demonstrate that the P Indicators Tool works in principle and that its modular structure provides a means of accounting for P loss from one layer to the next, and ultimately to receiving waters. Trial runs of the Tool suggest that modelled P delivery to water approximates measured water quality records. The transparency of the structure of the P Indicators Tool means that identification of poorly performing coefficients is possible, and further refinements of the Tool can be made to ensure it is better calibrated and subsequently validated against empirical data, as it becomes available.
Resumo:
Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.
Resumo:
Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters average soil thermal conductivity, specific beat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981-August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R-2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R-2 -values of the testing period were between 0.87 and 0.94 at a depth of 20cm. and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means, that the model is suitable for addition to catchment scale models.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A combination of idealized numerical simulations and analytical theory is used to investigate the spacing between convective orographic rainbands over the Coastal Range of western Oregon. The simulations, which are idealized from an observed banded precipitation event over the Coastal Range, indicate that the atmospheric response to conditionally unstable flow over the mountain ridge depends strongly on the subridge-scale topographic forcing on the windward side of the ridge. When this small-scale terrain contains only a single scale (l) of terrain variability, the band spacing is identical to l, but when a spectrum of terrain scales are simultaneously present, the band spacing ranges between 5 and 10 km, a value that is consistent with observations. Based on the simulations, an inviscid linear model is developed to provide a physical basis for understanding the scale selection of the rainbands. This analytical model, which captures the transition from lee waves upstream of the orographic cloud to moist convection within it, reveals that the spacing of orographic rainbands depends on both the projection of lee-wave energy onto the unstable cap cloud and the growth rate of unstable perturbations within the cloud. The linear model is used in tandem with numerical simulations to determine the sensitivity of the band spacing to a number of environmental and terrain-related parameters.
Resumo:
The triggering of convective orographic rainbands by small-scale topographic features is investigated through observations of a banded precipitation event over the Oregon Coastal Range and simulations using a cloud-resolving numerical model. A quasi-idealized simulation of the observed event reproduces the bands in the radar observations, indicating the model’s ability to capture the physics of the band-formation process. Additional idealized simulations reinforce that the bands are triggered by lee waves past small-scale topographic obstacles just upstream of the nominal leading edge of the orographic cloud. Whether a topographic obstacle in this region is able to trigger a strong rainband depends on the phase of its lee wave at cloud entry. Convective growth only occurs downstream of obstacles that give rise to lee-wave-induced displacements that create positive vertical velocity anomalies w_c and nearly zero buoyancy anomalies b_c as air parcels undergo saturation. This relationship is quantified through a simple analytic condition involving w_c, b_c, and the static stability N_m^2 of the cloud mass. Once convection is triggered, horizontal buoyancy gradients in the cross-flow direction generate circulations that align the bands parallel to the flow direction.
Resumo:
The commonly held view of the conditions in the North Atlantic at the last glacial maximum, based on the interpretation of proxy records, is of large-scale cooling compared to today, limited deep convection, and extensive sea ice, all associated with a southward displaced and weakened overturning thermohaline circulation (THC) in the North Atlantic. Not all studies support that view; in particular, the "strength of the overturning circulation" is contentious and is a quantity that is difficult to determine even for the present day. Quasi-equilibrium simulations with coupled climate models forced by glacial boundary conditions have produced differing results, as have inferences made from proxy records. Most studies suggest the weaker circulation, some suggest little or no change, and a few suggest a stronger circulation. Here results are presented from a three-dimensional climate model, the Hadley Centre Coupled Model version 3 (HadCM3), of the coupled atmosphere - ocean - sea ice system suggesting, in a qualitative sense, that these diverging views could all have occurred at different times during the last glacial period, with different modes existing at different times. One mode might have been characterized by an active THC associated with moderate temperatures in the North Atlantic and a modest expanse of sea ice. The other mode, perhaps forced by large inputs of meltwater from the continental ice sheets into the northern North Atlantic, might have been characterized by a sluggish THC associated with very cold conditions around the North Atlantic and a large areal cover of sea ice. The authors' model simulation of such a mode, forced by a large input of freshwater, bears several of the characteristics of the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) Project's reconstruction of glacial sea surface temperature and sea ice extent.
Resumo:
(From author). Comments: First 3D stochastic/fractal model of cirrus; first detailed analysis & explanation of power spectra of ice water content, including first observations of 50-km scale break and mixing-induced steepening of spectrum; first demonstration of the potential effect of wind shear on radiative fluxes by changing fall-streak orientation. Has spawned work on the effect of 3D photon transport on the radiative effects of cirrus clouds.
Resumo:
In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation. A long control run of the Third Hadley Centre Coupled Ocean-Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. ne degree of compensation in the northern extratropics was found to increase with increasing, time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes. In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland-Iceland-Norwegian (GIN) Seas. which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.
Resumo:
Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.
Resumo:
Despite the success of studies attempting to integrate remotely sensed data and flood modelling and the need to provide near-real time data routinely on a global scale as well as setting up online data archives, there is to date a lack of spatially and temporally distributed hydraulic parameters to support ongoing efforts in modelling. Therefore, the objective of this project is to provide a global evaluation and benchmark data set of floodplain water stages with uncertainties and assimilation in a large scale flood model using space-borne radar imagery. An algorithm is developed for automated retrieval of water stages with uncertainties from a sequence of radar imagery and data are assimilated in a flood model using the Tewkesbury 2007 flood event as a feasibility study. The retrieval method that we employ is based on possibility theory which is an extension of fuzzy sets and that encompasses probability theory. In our case we first attempt to identify main sources of uncertainty in the retrieval of water stages from radar imagery for which we define physically meaningful ranges of parameter values. Possibilities of values are then computed for each parameter using a triangular ‘membership’ function. This procedure allows the computation of possible values of water stages at maximum flood extents along a river at many different locations. At a later stage in the project these data are then used in assimilation, calibration or validation of a flood model. The application is subsequently extended to a global scale using wide swath radar imagery and a simple global flood forecasting model thereby providing improved river discharge estimates to update the latter.