780 resultados para Sperm-egg recognition
On the evolution of harming and recognition in finite panmictic and infinite structured populations.
Resumo:
Natural selection may favor two very different types of social behaviors that have costs in vital rates (fecundity and/or survival) to the actor: helping behaviors, which increase the vital rates of recipients, and harming behaviors, which reduce the vital rates of recipients. Although social evolutionary theory has mainly dealt with helping behaviors, competition for limited resources creates ecological conditions in which an actor may benefit from expressing behaviors that reduce the vital rates of neighbors. This may occur if the reduction in vital rates decreases the intensity of competition experienced by the actor or that experienced by its offspring. Here, we explore the joint evolution of neutral recognition markers and marker-based costly conditional harming whereby actors express harming, conditional on actor and recipient bearing different conspicuous markers. We do so for two complementary demographic scenarios: finite panmictic and infinite structured populations. We find that marker-based conditional harming can evolve under a large range of recombination rates and group sizes under both finite panmictic and infinite structured populations. A direct comparison with results for the evolution of marker-based conditional helping reveals that, if everything else is equal, marker-based conditional harming is often more likely to evolve than marker-based conditional helping.
Resumo:
CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The kinetics of binding of a glycolipid-anchored protein (the promastigote surface protease, PSP) to planar lecithin bilayers is studied by an integrated optics technique, in which the bilayer membrane is supported on an optical wave guide and the phase velocities of guided light modes in the wave guide are measured. From these velocities, the optical parameters of the membrane and PSP layers deposited on the waveguide are determined, yielding in particular the mass of PSP bound to the membrane, which is followed in real time. From a comparison of the binding rates of PSP and PSP from which the lipid moiety has been removed, it is shown that the lipid moiety plays a key role in anchoring the protein to the membrane. Specific and nonspecific binding of antibodies to membrane-anchored PSP is also investigated. As little as a fifth of a monolayer of PSP is sufficient to suppress the appreciable nonspecific binding of antibodies to the membrane.
Resumo:
Mating plugs occluding the female gonopore after mating are a widespread phenomenon. In scorpions, two main types of mating plugs are found: sclerotized mating plugs being parts of the spermatophore that break off during mating, and gel-like mating plugs being gelatinous fluids that harden in the female genital tract. In this study, the gel-like mating plug of Euscorpius italicus was investigated with respect to its composition, fine structure, and changes over time. Sperm forms the major component of the mating plug, a phenomenon previously unknown in arachnids. Three parts of the mating plug can be distinguished. The part facing the outside of the female (outer part) contains sperm packages containing inactive spermatozoa. In this state, sperm is transferred. In the median part, the sperm packages get uncoiled to single spermatozoa. In the inner part, free sperm is embedded in a large amount of secretions. Fresh mating plugs are soft gelatinous, later they harden from outside toward inside. This process is completed after 3-5 days. Sperm from artificially triggered spermatophores could be activated by immersion in insect Ringer's solution indicating that the fluid condition in the females' genital tract or females' secretions causes sperm activation. Because of the male origin of the mating plug, it has likely evolved under sperm competition or sexual conflict. As females refused to remate irrespective of the presence or absence of a mating plug, females may have changed their mating behavior in the course of evolution from polyandry to monandry.
Resumo:
Humans live in symbiosis with 10(14) commensal bacteria among which >99% resides in their gastrointestinal tract. The molecular bases pertaining to the interaction between mucosal secretory IgA (SIgA) and bacteria residing in the intestine are not known. Previous studies have demonstrated that commensals are naturally coated by SIgA in the gut lumen. Thus, understanding how natural SIgA interacts with commensal bacteria can provide new clues on its multiple functions at mucosal surfaces. Using fluorescently labeled, nonspecific SIgA or secretory component (SC), we visualized by confocal microscopy the interaction with various commensal bacteria, including Lactobacillus, Bifidobacteria, Escherichia coli, and Bacteroides strains. These experiments revealed that the interaction between SIgA and commensal bacteria involves Fab- and Fc-independent structural motifs, featuring SC as a crucial partner. Removal of glycans present on free SC or bound in SIgA resulted in a drastic drop in the interaction with Gram-positive bacteria, indicating the essential role of carbohydrates in the process. In contrast, poor binding of Gram-positive bacteria by control IgG was observed. The interaction with Gram-negative bacteria was preserved whatever the molecular form of protein partner used, suggesting the involvement of different binding motifs. Purified SIgA and SC from either mouse hybridoma cells or human colostrum exhibited identical patterns of recognition for Gram-positive bacteria, emphasizing conserved plasticity between species. Thus, sugar-mediated binding of commensals by SIgA highlights the currently underappreciated role of glycans in mediating the interaction between a highly diverse microbiota and the mucosal immune system.
Resumo:
To elucidate the structural basis of T cell recognition of hapten-modified antigenic peptides, we studied the interaction of the T1 T cell antigen receptor (TCR) with its ligand, the H-2Kd-bound Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid (ABA) on P. berghei circumsporozoite Lys259. The photoaffinity-labeled TCR residue(s) were mapped as Tyr48 and/or Tyr50 of complementary determining region 2beta (CDR2beta). Other TCR-ligand contacts were identified by mutational analysis. Molecular modeling, based on crystallographic coordinates of closely related TCR and major histocompatibility complex I molecules, indicated that ABA binds strongly and specifically in a cavity between CDR3alpha and CDR2beta. We conclude that TCR expressing selective Vbeta and CDR3alpha sequences form a binding domain between CDR3alpha and CDR2beta that can accommodate nonpeptidic moieties conjugated at the C-terminal portion of peptides binding to major histocompatibility complex (MHC) encoded proteins.
Resumo:
Embryonic development in nonmammalian vertebrates depends entirely on nutritional reserves that are predominantly derived from vitellogenin proteins and stored in egg yolk. Mammals have evolved new resources, such as lactation and placentation, to nourish their developing and early offspring. However, the evolutionary timing and molecular events associated with this major phenotypic transition are not known. By means of sensitive comparative genomics analyses and evolutionary simulations, we here show that the three ancestral vitellogenin-encoding genes were progressively lost during mammalian evolution (until around 30-70 million years ago, Mya) in all but the egg-laying monotremes, which have retained a functional vitellogenin gene. Our analyses also provide evidence that the major milk resource genes, caseins, which have similar functional properties as vitellogenins, appeared in the common mammalian ancestor approximately 200-310 Mya. Together, our data are compatible with the hypothesis that the emergence of lactation in the common mammalian ancestor and the development of placentation in eutherian and marsupial mammals allowed for the gradual loss of yolk-dependent nourishment during mammalian evolution
Resumo:
A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.
Resumo:
The aim of this study was to establish and compare the sperm characteristics in four shrew species in the context of the sperm competition hypothesis. As expected, the large relative testis size in promiscuous species was associated with a high number of cauda epididymal spermatozoa and a high concentration of circulating testosterone. In addition, in Sorex and Neomys, species with high intensity of sperm competition, the spermatozoa stored in cauda epididymis were characterized by high percentage of progressive motility whereas in Crocidura and Suncus, the cauda epididymal spermatozoa were motile but with very low percentage of progressive motility. This capability is achieved only following the passage through the vas gland, a specialized region for sperm storage located along the vas deferens in these shrew species. The hypothesis that sperm competition is positively correlated with spermatozoa length could not be confirmed. In Crocidura and Suncus, the total sperm length is increased by the large sperm head due to a big acrosome. This trait, specific to the subfamily Crocidurinae, may results from a selective pressure independent of the context of sperm competition, related to a specific, but as yet unclear role, for the acrosome during the fertilization.
Resumo:
Hyperglycosylated human chorionic gonadotropin (H-hCG) is secreted by the placenta in early pregnancy. Decreased H-hCG levels have been associated with abortion in spontaneous pregnancy. We retrospectively measured H-hCG and dimeric hCG in the sera of 87 in vitro fertilization patients obtained in the 3 weeks following embryo transfer and set the results in relation to pregnancy outcome. H-hCG and dimeric hCG were correlated (r(2) = 0.89), and were significantly decreased in biochemical pregnancy (2 microg/l and 18 IU/l, respectively) compared to early pregnancy loss (22 microg/l and 331 IU/l) and ongoing pregnancy (32 microg/l and 353 IU/l). Only H-hCG tended to discriminate between these last two groups.
Resumo:
Abstract:The objective of this work was to evaluate the effect of limestone particle sizes in the diet and of lighting regimes on the egg and bone quality and on the performance of commercial laying hens. Three hundred Hissex White layers, at 18 weeks of age, were distributed in a completely randomized design, in a 5×2 factorial arrangement (coarse limestone in the diet at 0, 25, 50, 75, and 100%; with or without artificial light), with five replicates of six birds. No significant interaction was observed between particle sizes and lighting regime for the evaluated parameters. There was no significant effect of coarse limestone level in the diet on the performance and egg quality of hens; however, bone deformity (3.23 to 4.01 mm), strength (5.19 to 6.70 kgf cm-2), and mineral matter (51.09 to 59.61%) improved as the proportion of coarse limestone increased. For lighting regime, the treatment with artificial light yielded higher Haugh unit values (87.17 vs. 85.54) than that with natural light only. Greater limestone particles improve bone quality of laying hens, and the use of artificial light can benefit the albumen quality of the eggs.
Resumo:
The ability to distinguish nestmates from foreign individuals is central to the functioning of insect societies. In ants, workers from multiple-queen colonies are often less aggressive than workers from single-queen ones. In line with this observation, it has been hypothesized that workers from multiple-queen colonies have less precise recognition abilities than workers from single-queen ones because their colonies contain genetically more diverse individuals, which results in a broader template of recognition cues. Here, we assessed the impact of social structure ( queen number) variation on nestmate recognition and aggression in a large population of the socially polymorphic ant Formica selysi. We staged unilateral aggression tests on the nest surface. Workers from single-and multiple-queen colonies had good nestmate recognition ability and did not differ significantly in their level of aggression towards foreign, immobilized workers ( cue-bearers). In particular, workers from multiple-queen colonies efficiently recognized non-nestmates despite the higher genetic diversity in their colony. Cue-bearers from single- and multiple-queen colonies elicited similar reactions. However, the level of aggression was higher between than within social forms, suggesting that workers detect a signal that is specific to the colony social structure. Finally, the level of aggression was not correlated with the genetic distance between colonies. Overall, we found no evidence for the hypothesis that the presence of multiple breeders in the same colony decreases recognition abilities and found no simple relationship between genetic diversity and aggression level. (c) 2007 The Association for the Study of Animal Behaviou
Resumo:
The avocado fruit borer, Stenoma catenifer (Wals.) has been a limiting factor in growing avocados over the last years in many Brazilian states. This is a result of the lack of safe and feasible management practices to minimize the fruit borer damage. The aim of this study was to obtain information on the pest biology and ecology as well as on the role of natural enemies to define strategies to control the pest. Samples were taken biweekly and consisted of 20 fruits collected randomly (10 from the upper half and 10 from the lower half of the plant) in ten plants, cv. Margarida, in a commercial avocado grove in Arapongas and Cambé regions, PR, from October/2001 to September/2002. Laboratory determinations of the percentage of damaged fruit per plant region, location and number of bored fruit sites, and the number and location of the fruit borer eggs, including parasitized ones, were performed. The results showed that S. catenifer preferred to oviposit and attack fruits located on the upper half of the trees. The majority of the eggs were laid on the fruit pedicel whereas the damage was mainly located on the lower half of the fruits. Trichogrammatids were the most constant and abundant parasitoids found in both localities throughout the study period.
Resumo:
Perceiving the world visually is a basic act for humans, but for computers it is still an unsolved problem. The variability present innatural environments is an obstacle for effective computer vision. The goal of invariant object recognition is to recognise objects in a digital image despite variations in, for example, pose, lighting or occlusion. In this study, invariant object recognition is considered from the viewpoint of feature extraction. Thedifferences between local and global features are studied with emphasis on Hough transform and Gabor filtering based feature extraction. The methods are examined with respect to four capabilities: generality, invariance, stability, and efficiency. Invariant features are presented using both Hough transform and Gabor filtering. A modified Hough transform technique is also presented where the distortion tolerance is increased by incorporating local information. In addition, methods for decreasing the computational costs of the Hough transform employing parallel processing and local information are introduced.