930 resultados para Sperm survival
Resumo:
In a rapidly changing world it is essential that we should understand the factors controlling the sustainability of ecosystems. In aquatic ecosystems, both sensitivity and recoverability are influenced strongly by the life cycles of the organisms concerned. The response of individual species to change and their chances of survival in a variable environment can be affected dramatically by the timing and location of disturbances relative to their natural rhythms of fertilisation, dispersal and development. This book illustrates the wide range of issues that must be addressed to understand such relationships. Its purpose is to consider those aspects of life history that make aquatic organisms especially susceptible to (or adaptable to) changing environments -and hence to discuss links between impacts on individuals and the consequent effects on populations and communities.
Resumo:
The distribution and function of many marine species is largely determined by the effect of abiotic drivers on their reproduction and early development, including those drivers associated with elevated CO2 and global climate change. A number of studies have therefore investigated the effects of elevated pCO2 on a range of reproductive parameters, including sperm motility and fertilisation success. To date, most of these studies have not examined the possible synergistic effects of other abiotic drivers, such as the increased frequency of hypoxic events that are also associated with climate change. The present study is therefore novel in assessing the impact that an hypoxic event could have on reproduction in a future high CO2 ocean. Specifically, this study assesses sperm motility and fertilisation success in the sea urchin Paracentrotus lividus exposed to elevated pCO2 for 6 months. Gametes extracted from these pre-acclimated individuals were subjected to hypoxic conditions simulating an hypoxic event in a future high CO2 ocean. Sperm swimming speed increased under elevated pCO2 and decreased under hypoxic conditions resulting in the elevated pCO2 and hypoxic treatment being approximately equivalent to the control. There was also a combined negative effect of increased pCO2 and hypoxia on the percentage of motile sperm. There was a significant negative effect of elevated pCO2 on fertilisation success, and when combined with a simulated hypoxic event there was an even greater effect. This could affect cohort recruitment and in turn reduce the density of this ecologically and economically important ecosystem engineer therefore potentially effecting biodiversity and ecosystem services.