965 resultados para Spatial load forecasting
Resumo:
Background: Extreme heat is a leading weather-related cause of illness and death in many locations across the globe, including subtropical Australia. The possibility of increasingly frequent and severe heat waves warrants continued efforts to reduce this health burden, which could be accomplished by targeting intervention measures toward the most vulnerable communities. Objectives: We sought to quantify spatial variability in heat-related morbidity in Brisbane, Australia, to highlight regions of the city with the greatest risk. We also aimed to find area-level social and environmental determinants of high risk within Brisbane. Methods: We used a series of hierarchical Bayesian models to examine city-wide and intracity associations between temperature and morbidity using a 2007–2011 time series of geographically referenced hospital admissions data. The models accounted for long-term time trends, seasonality, and day of week and holiday effects. Results: On average, a 10°C increase in daily maximum temperature during the summer was associated with a 7.2% increase in hospital admissions (95% CI: 4.7, 9.8%) on the following day. Positive statistically significant relationships between admissions and temperature were found for 16 of the city’s 158 areas; negative relationships were found for 5 areas. High-risk areas were associated with a lack of high income earners and higher population density. Conclusions: Geographically targeted public health strategies for extreme heat may be effective in Brisbane, because morbidity risk was found to be spatially variable. Emergency responders, health officials, and city planners could focus on short- and long-term intervention measures that reach communities in the city with lower incomes and higher population densities, including reduction of urban heat island effects.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel beam (LSB) subject to web crippling under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. The LSB sections with two rectangular hollow flanges are made using a simultaneous cold-forming and electric resistance welding process. Due to the geometry of the LSB, and its unique residual stress characteristics and initial geometric imperfections, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending, predominant shear and combined actions. To date, however, no investigation has been conducted on the web crippling behaviour and strength of LSB sections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs. Twenty-eight web crippling tests were conducted under ETF and ITF load cases, and the ultimate web crippling capacities were compared with the predictions from the design equations in AS/NZS 4600 and AISI S100. This comparison showed that AS/NZS 4600 and AISI S100 web crippling design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs based on experimental results. Suitable design rules were also developed under the direct strength method (DSM) format.
Resumo:
Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia but few data are available on the risk factors. We assessed the impact of spatial climatic, socioeconomic and ecological factors on the transmission of BFV disease in Queensland, Australia, using spatial regression. All our analyses indicate that spatial lag models provide a superior fit to the data compared to spatial error and ordinary least square models. The residuals of the spatial lag models were found to be uncorrelated, indicating that the models adequately account for spatial and temporal autocorrelation. Our results revealed that minimum temperature, distance from coast and low tide were negatively and rainfall was positively associated with BFV disease in coastal areas, whereas minimum temperature and high tide were negatively and rainfall was positively associated with BFV disease (all P-value.
Resumo:
We examine enterprise social network usage data obtained from a community of store managers in a leading Australian retail organization, over a period of fifteen months. Our interest in examining this data is in spatial preferences by the network users, that is, to ascertain who is communicating with whom and where. We offer several contrasting theoretical perspectives for spatial preference patterns and examine these against data collected from over 12,000 messages exchanged between 530 managers in 897 stores. Our findings show that interactions can generally be characterized by individual preferences for local communication but also that two different user communities exist – locals and globals. We develop empirical profiles for these social network user communities and outline implications for theories on spatial influences on communication behaviours on enterprise social networks.
Resumo:
Collaboration between neuroscience and architecture is emerging as a key field of research as demonstrated in recent times by development of the Academy of Neuroscience for Architecture (ANFA) and other societies. Neurological enquiry of affect and spatial experience from a design perspective remains in many instances unchartered. Research using portable near infrared spectroscopy (fNIRs) - an emerging non-invasive neuro-imaging device, is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli. This innovation provides a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. Studies also report pleasant and unpleasant emotional responses within certain interior environments revealing a deeper perceptual sensitivity than would be expected. Comparative fNIRS studies between the sighted and blind concerning spatial experience has the potential to provide greater understanding of emotional responses to architectural environments. Supported by contemporary theories of architectural aesthetics, this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS upon spatial research and practice within the field of architecture and points to a potential taxonomy of particular formations of space and affect.
Resumo:
Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.