867 resultados para Spatial coceptyalization
Resumo:
This paper proposes a spatial filtering technique forthe reception of pilot-aided multirate multicode direct-sequencecode division multiple access (DS/CDMA) systems such as widebandCDMA (WCDMA). These systems introduce a code-multiplexedpilot sequence that can be used for the estimation of thefilter weights, but the presence of the traffic signal (transmittedat the same time as the pilot sequence) corrupts that estimationand degrades the performance of the filter significantly. This iscaused by the fact that although the traffic and pilot signals areusually designed to be orthogonal, the frequency selectivity of thechannel degrades this orthogonality at hte receiving end. Here,we propose a semi-blind technique that eliminates the self-noisecaused by the code-multiplexing of the pilot. We derive analyticallythe asymptotic performance of both the training-only andthe semi-blind techniques and compare them with the actual simulatedperformance. It is shown, both analytically and via simulation,that high gains can be achieved with respect to training-onlybasedtechniques.
Resumo:
A novel technique to obtain optimum blind spatialprocessing for frequency diversity spread spectrum (FDSS) communicationsystems is introduced. The sufficient statistics for alinear combiner, which prove ineffective due to the interferers frequencycharacteristics, are modified to yield improved detectionunder partial jamming in the spectral domain. Robustness to partialtime jamming is achieved by extending the notion of replicasover the frequency axis to a repetition over the time variable. Analysisand simulations are provided, showing the advantages of usingFDSS with spatial diversity to combat the interference when it isconfined to a narrow frequency band or short time interval relativeto the desired signal extent in either domain.
Resumo:
Question Can we predict where forest regrowth caused by abandonment of agricultural activities is likely to occur? Can we assess how it may conflict with grassland diversity hotspots? Location Western Swiss Alps (4003210m a.s.l.). Methods We used statistical models to predict the location of land abandonment by farmers that is followed by forest regrowth in semi-natural grasslands of the Western Swiss Alps. Six modelling methods (GAM, GBM, GLM, RF, MDA, MARS) allowing binomial distribution were tested on two successive transitions occurring between three time periods. Models were calibrated using data on land-use change occurring between 1979 and 1992 as response, and environmental, accessibility and socio-economic variables as predictors, and these were validated for their capacity to predict the changes observed from 1992 to 2004. Projected probabilities of land-use change from an ensemble forecast of the six models were combined with a model of plant species richness based on a field inventory, allowing identification of critical grassland areas for the preservation of biodiversity. Results Models calibrated over the first land-use transition period predicted the second transition with reasonable accuracy. Forest regrowth occurs where cultivation costs are high and yield potential is low, i.e. on steeper slopes and at higher elevations. Overlaying species richness with land-use change predictions, we identified priority areas for the management and conservation of biodiversity at intermediate elevations. Conclusions Combining land-use change and biodiversity projections, we propose applied management measures for targeted/identified locations to limit the loss of biodiversity that could otherwise occur through loss of open habitats. The same approach could be applied to other types of land-use changes occurring in other ecosystems.
Resumo:
The objective of this work was to evaluate the spatial distribution of thrips in different crops, and the correlation between meterological parameters and the flight movements of this pest, using immunomarking. The experiment was conducted in cultivated areas, with tomato (Solanum lycopersicum), potato (Solanum tuberosum), and onion (Allium cepa); and non-cultivated areas, with weedy plants. The areas with tomato (100 days), potato (20 days), and weeds were sprayed with casein, albumin, and soy milk, respectively, to mark adult thrips; however, the areas with onion (50 days) and tomato (10 days) were not sprayed. Thrips were captured with georeferenced blue sticky traps, transferred into tubes, and identified by treatment area with the Elisa test. The dependence between the samples and the capture distance was determined using geostatistics. Meteorlogical parameters were correlated with thrips density in each area. The three protein types used for immunomarking were detected in different proportions in the thrips. There was a correlation between casein-marked thrips and wind speed. The thrips flew a maximum distance of 3.5 km and dispersed from the older (tomato) to the younger crops (potato). The immunomarking method is efficient to mark large quantities of thrips.
Resumo:
Simple reaction times (RTs) to auditory-somatosensory (AS) multisensory stimuli are facilitated over their unisensory counterparts both when stimuli are delivered to the same location and when separated. In two experiments we addressed the possibility that top-down and/or task-related influences can dynamically impact the spatial representations mediating these effects and the extent to which multisensory facilitation will be observed. Participants performed a simple detection task in response to auditory, somatosensory, or simultaneous AS stimuli that in turn were either spatially aligned or misaligned by lateralizing the stimuli. Additionally, we also informed the participants that they would be retrogradely queried (one-third of trials) regarding the side where a given stimulus in a given sensory modality was presented. In this way, we sought to have participants attending to all possible spatial locations and sensory modalities, while nonetheless having them perform a simple detection task. Experiment 1 provided no cues prior to stimulus delivery. Experiment 2 included spatially uninformative cues (50% of trials). In both experiments, multisensory conditions significantly facilitated detection RTs with no evidence for differences according to spatial alignment (though general benefits of cuing were observed in Experiment 2). Facilitated detection occurs even when attending to spatial information. Performance with probes, quantified using sensitivity (d'), was impaired following multisensory trials in general and significantly more so following misaligned multisensory trials. This indicates that spatial information is not available, despite being task-relevant. The collective results support a model wherein early AS interactions may result in a loss of spatial acuity for unisensory information.
Resumo:
INTRODUCTION: In this study we investigated differences in the spatial recruitment of motor units (MUs) in the quadriceps when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. METHODS: M-waves and mechanical twitches were evoked using over-the-quadriceps and femoral nerve stimulation of gradually increasing intensity from 22 young, healthy subjects. Spatial recruitment was investigated using recruitment curves of M-waves recorded from the vastus medialis (VM) and vastus lateralis (VL) and of twitches recorded from the quadriceps. RESULTS: At maximal stimulation intensity (Imax), no differences were found between nerve and over-the-quadriceps stimulation. At submaximal intensities, VL M-wave amplitude was higher for over-the-quadriceps stimulation at 40% Imax, and peak twitch force was greater for nerve stimulation at 60% and 80% Imax. CONCLUSIONS: For the VM, MU spatial recruitment during nerve and over-the-quadriceps stimulation of increasing intensity occurred in a similar manner, whereas significant differences were observed for the VL. Muscle Nerve, 2013.
Maps, Spheres and Places in Donnean Love. Donne's spatial representations in the "Songs and Sonnets"
Resumo:
Capsule The analysis of 635 papers about the diet of the European Barn Owl Tyto alba showed that 83 751 birds were captured out of 3.44 million prey items (2.4%). Birds were more frequently captured on islands than mainland, in southern than northern Europe and in eastern than western Europe. Between 1860 and 2012, the consumption of birds decreased in northern and eastern Europe. Among avian prey, the House Sparrow Passer domesticus, the most frequently captured bird (65.7%), decreased in frequency during the last 150 years in eastern Europe.
Resumo:
AimOur aim was to understand the interplay of heterogeneous climatic and spatial landscapes in shaping the distribution of nuclear microsatellite variation in burrowing parrots, Cyanoliseus patagonus. Given the marked phenotypic differences between populations of burrowing parrots we hypothesized an important role of geographical as well climatic heterogeneity in the population structure of this species. LocationSouthern South America. MethodsWe applied a landscape genetics approach to investigate the explicit patterns of genetic spatial autocorrelation based on both geography and climate using spatial principal component analysis (sPCA). This necessitated a novel statistical estimation of the species climatic landscape, considering temperature- and precipitation-based variables separately to evaluate their weight in shaping the distribution of genetic variation in our model system. ResultsGeographical and climatic heterogeneity successfully explained molecular variance in burrowing parrots. sPCA divided the species distribution into two main areas, Patagonia and the pre-Andes, which were connected by an area of geographical and climatic transition. Moreover, sPCA revealed cryptic and conservation-relevant genetic structure: the pre-Andean populations and the transition localities were each divided into two groups, each management units for conservation. Main conclusionssPCA, a method originally developed for spatial genetics, allowed us to unravel the genetic structure related to spatial and climatic landscapes and to visualize these patterns in landscape space. These novel climatic inferences underscore the importance of our modified sPCA approach in revealing how climatic variables can drive cryptic patterns of genetic structure, making the approach potentially useful in the study of any species distributed over a climatically heterogeneous landscape.
Resumo:
Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance.