956 resultados para Spatial Point Pattern analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: The interhemispheric asymmetries that originate from connectivity-related structuring of the cerebral cortex are compromised in schizophrenia (SZ). Recently, we have revealed the whole-head topography of EEG synchronization in SZ (Jalili et al. 2007; Knyazeva et al. 2008). Here we extended the analysis to assess the abnormality in the asymmetry of synchronization, which is further motivated by the evidence that the interhemispheric asymmetries suspected to be abnormal in SZ originate from the connectivity-related structuring of the cortex. Methods: Thirteen right-handed SZ patients and thirteen matched controls, participated in this study and the multichannel (128) EEGs were recorded for 3-5 minutes at rest. Then, Laplacian EEG (LEEG) were calculated using a 2-D spline. The LEEGs were analysis through calculating the power spectral density using Welch's average periodogram method. Furthermore, using a state-space based multivariate synchronization measure, S-estimator, we analyzed the correlate of the functional cortico-cortical connectivity in SZ patients compared to the controls. The values of S-estimator were obtained at three different special scales: first-order neighbors for each sensor location, second-order neighbors, and the whole hemisphere. The synchronization measures based on LEEG of alpha and beta bands were applied and tuned to various spatial scales including local, intraregional, and long-distance levels. To assess the between-group differences, we used a permutation version of Hotelling's T2 test. For correlation analysis, Spearman Rank Correlation was calculated. Results: Compared to the controls, who had rightward asymmetry at a local level (LEEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (first- and second-order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization. This deviation in asymmetry across the anterior-to-posterior axis is consistent with the cerebral form of the so-called Yakovlevian or anticlockwise cerebral torque. Moreover, the negative occipital and positive frontal asymmetry values suggest higher regional synchronization among the left occipital and the right frontal locations relative to their symmetrical counterparts. Correlation analysis linked the posterior intraregional and hemispheric abnormalities to the negative SZ symptoms, whereas the asymmetry of LEEG power appeared to be weakly coupled to clinical ratings. The posterior intraregional abnormalities of asymmetry were shown to increase with the duration of the disease. The tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern in normal subjects and SZ patients, are discussed. Conclusions: Overall, our findings reveal the abnormalities in the synchronization asymmetry in SZ patients and heavy involvement of the right hemisphere in these abnormalities. These results indicate that anomalous asymmetry of cortico-cortical connections in schizophrenia is amenable to electrophysiological analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pollination syndromes involve convergent evolution towards phenotypes composed of specific scents, colours or floral morphologies that attract or restrict pollinator access to reward. How these traits might influence the distributions of plant species in interaction with pollinators has rarely been investigated. We sampled 870 vegetation plots in the western Swiss Alps and classified the plant species into seven blossom types according to their floral morphology (wind, disk, funnel, tube, bilabiate, head or brush). We investigated the environmental features of plots with functional diversity (FD) lower than expected by chance alone to detect potential pollination filtering and related the proportions of the seven blossom types to a combination of environmental descriptors. From these results, we inferred the potential effect of the pollinator on the spatial distribution of plant species. The vegetation plots with significantly lower FD of blossom types than expected by chance were found at higher altitudes, and the proportions of blossom types were strongly patterned along the same gradient. These results support a biotic filtering effect on plant species assemblages through pollination: disk blossoms became dominant at higher altitudes, resulting in a lower FD. In harsh conditions at high altitudes, pollinators usually decrease in activity, and the openness of the disk blossom grants access to any available pollinator. Inversely, bilabiate blossoms, which are mostly pollinated by bees, were more abundant at lower elevations, which are characterised by greater abundance and diversity of bees. Generalisation through openness of the blossom could be advantageous at high elevations, while specialisation could be a successful alternative strategy at lower elevations. The approach used in this study is purely correlative, and further investigations should be conducted to infer the nature of the causal relationship between plant and pollinator distributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spatial variability of strongly weathered soils under sugarcane and soybean/wheat rotation was quantitatively assessed on 33 fields in two regions in São Paulo State, Brazil: Araras (15 fields with sugarcane) and Assis (11 fields with sugarcane and seven fields with soybean/wheat rotation). Statistical methods used were: nested analysis of variance (for 11 fields), semivariance analysis and analysis of variance within and between fields. Spatial levels from 50 m to several km were analyzed. Results are discussed with reference to a previously published study carried out in the surroundings of Passo Fundo (RS). Similar variability patterns were found for clay content, organic C content and cation exchange capacity. The fields studied are quite homogeneous with respect to these relatively stable soil characteristics. Spatial variability of other characteristics (resin extractable P, pH, base- and Al-saturation and also soil colour), varies with region and, or land use management. Soil management for sugarcane seems to have induced modifications to greater depths than for soybean/wheat rotation. Surface layers of soils under soybean/wheat present relatively little variation, apparently as a result of very intensive soil management. The major part of within-field variation occurs at short distances (< 50 m) in all study areas. Hence, little extra information would be gained by increasing sampling density from, say, 1/km² to 1/50 m². For many purposes, the soils in the study regions can be mapped with the same observation density, but residual variance will not be the same in all areas. Bulk sampling may help to reveal spatial patterns between 50 and 1.000 m.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of statistical models for forensic fingerprint identification purposes has been the subject of increasing research attention in recent years. This can be partly seen as a response to a number of commentators who claim that the scientific basis for fingerprint identification has not been adequately demonstrated. In addition, key forensic identification bodies such as ENFSI [1] and IAI [2] have recently endorsed and acknowledged the potential benefits of using statistical models as an important tool in support of the fingerprint identification process within the ACE-V framework. In this paper, we introduce a new Likelihood Ratio (LR) model based on Support Vector Machines (SVMs) trained with features discovered via morphometric and spatial analyses of corresponding minutiae configurations for both match and close non-match populations often found in AFIS candidate lists. Computed LR values are derived from a probabilistic framework based on SVMs that discover the intrinsic spatial differences of match and close non-match populations. Lastly, experimentation performed on a set of over 120,000 publicly available fingerprint images (mostly sourced from the National Institute of Standards and Technology (NIST) datasets) and a distortion set of approximately 40,000 images, is presented, illustrating that the proposed LR model is reliably guiding towards the right proposition in the identification assessment of match and close non-match populations. Results further indicate that the proposed model is a promising tool for fingerprint practitioners to use for analysing the spatial consistency of corresponding minutiae configurations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent theoretical models of economic growth have emphasised the role of external effects on the accumulation of factors of production. Although most of the literature has considered the externalities across firms within a region, in this paper we go a step further and consider the possibility that these externalities cross the barriers of regional economies. We assess the role of these external effects in explaining growth and economic convergence. We present a simple growth model, which includes externalities across economies, developing a methodology for testing their existence and estimating their strength. In our view, spatial econometrics is naturally suited to an empirical consideration of these externalities. We obtain evidence on the presence of significant externalities both across Spanish and European regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent theoretical models of economic growth have emphasised the role of external effects on the accumulation of factors of production. Although most of the literature has considered the externalities across firms within a region, in this paper we go a step further and consider the possibility that these externalities cross the barriers of regional economies. We assess the role of these external effects in explaining growth and economic convergence. We present a simple growth model, which includes externalities across economies, developing a methodology for testing their existence and estimating their strength. In our view, spatial econometrics is naturally suited to an empirical consideration of these externalities. We obtain evidence on the presence of significant externalities both across Spanish and European regions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The modeling and estimation of the parameters that define the spatial dependence structure of a regionalized variable by geostatistical methods are fundamental, since these parameters, underlying the kriging of unsampled points, allow the construction of thematic maps. One or more atypical observations in the sample data can affect the estimation of these parameters. Thus, the assessment of the combined influence of these observations by the analysis of Local Influence is essential. The purpose of this paper was to propose local influence analysis methods for the regionalized variable, given that it has n-variate Student's t-distribution, and compare it with the analysis of local influence when the same regionalized variable has n-variate normal distribution. These local influence analysis methods were applied to soil physical properties and soybean yield data of an experiment carried out in a 56.68 ha commercial field in western Paraná, Brazil. Results showed that influential values are efficiently determined with n-variate Student's t-distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of external fluctuations on the formation of spatial patterns is analyzed by means of a stochastic Swift-Hohenberg model with multiplicative space-correlated noise. Numerical simulations in two dimensions show a shift of the bifurcation point controlled by the intensity of the multiplicative noise. This shift takes place in the ordering direction (i.e., produces patterns), but its magnitude decreases with that of the noise correlation length. Analytical arguments are presented to explain these facts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

THESIS ABSTRACTThis thesis project was aimed at studying the molecular mechanisms underlying learning and memory formation, in particular as they relate to the metabolic coupling between astrocytes and neurons. For that, changes in the metabolic activity of different mice brain regions after 1 or 9 days of training in an eight-arm radial maze were assessed by (14C) 2-deoxyglucose (2DG) autoradiography. Significant differences in the areas engaged during the behavioral task at day 1 (when animals are confronted for the first time to the learning task) and at day 9 (when animals are highly performing) have been identified. These areas include the hippocampus, the fornix, the parietal cortex, the laterodorsal thalamic nucleus and the mammillary bodies at day 1 ; and the anterior cingulate, the retrosplenial cortex and the dorsal striatum at day 9. Two of these cerebral regions (those presenting the greatest changes at day 1 and day 9: the hippocampus and the retrosplenial cortex, respectively) were microdissected by laser capture microscopy and selected genes related to neuron-glia metabolic coupling, glucose metabolism and synaptic plasticity were analyzed by RT-PCR. 2DG and gene expression analysis were performed at three different times: 1) immediately after the end of the behavioral paradigm, 2) 45 minutes and 3) 6 hours after training. The main goal of this study was the identification of the metabolic adaptations following the learning task. Gene expression results demonstrate that the learning task profoundly modulates the pattern of gene expression in time, meaning that these two cerebral regions with high 2DG signal (hippocampus and retrosplenial cortex) have adapted their metabolic molecular machinery in consequence. Almost all studied genes show a higher expression in the hippocampus at day 1 compared to day 9, while an increased expression was found in the retrosplenial cortex at day 9. We can observe these molecular adaptations with a short delay of 45 minutes after the end of the task. However, 6 hours after training a high gene expression was found at day 9 (compared to day 1) in both regions, suggesting that only one day of training is not sufficient to detect transcriptional modifications several hours after the task. Thus, gene expression data match 2DG results indicating a transfer of information in time (from day 1 to day 9) and in space (from the hippocampus to the retrosplenial cortex), and this at a cellular and a molecular level. Moreover, learning seems to modify the neuron-glia metabolic coupling, since several genes involved in this coupling are induced. These results also suggest a role of glia in neuronal plasticity.RESUME DU TRAVAIL DE THESECe projet de thèse a eu pour but l'étude des mécanismes moléculaires qui sont impliqués dans l'apprentissage et la mémoire et, en particulier, à les mettre en rapport avec le couplage métabolique existant entre les astrocytes et les neurones. Pour cela, des changements de l'activité métabolique dans différentes régions du cerveau des souris après 1 ou 9 jours d'entraînement dans un labyrinthe radial à huit-bras ont été évalués par autoradiographie au 2-désoxyglucose (2DG). Des différences significatives dans les régions engagées pendant la tâche comportementale au jour 1 (quand les animaux sont confrontés pour la première fois à la tâche) et au jour 9 (quand les animaux ont déjà appris) ont été identifiés. Ces régions incluent, au jour 1, l'hippocampe, le fornix, le cortex pariétal, le noyau thalamic laterodorsal et les corps mamillaires; et, au jour 9, le cingulaire antérieur, le cortex retrosplenial et le striatum dorsal. Deux de ces régions cérébrales (celles présentant les plus grands changements à jour 1 et à jour 9: l'hippocampe et le cortex retrosplenial, respectivement) ont été découpées par microdissection au laser et quelques gènes liés au couplage métabolique neurone-glie, au métabolisme du glucose et à la plasticité synaptique ont été analysées par RT-PCR. L'étude 2DG et l'analyse de l'expression de gènes ont été exécutés à trois temps différents: 1) juste après entraînement, 2) 45 minutes et 3) 6 heures après la fin de la tâche. L'objectif principal de cette étude était l'identification des adaptations métaboliques suivant la tâche d'apprentissage. Les résultats de l'expression de gènes démontrent que la tâche d'apprentissage module profondément le profile d'expression des gènes dans le temps, signifiant que ces deux régions cérébrales avec un signal 2DG élevé (l'hippocampe et le cortex retrosplenial) ont adapté leurs « machines moléculaires » en conséquence. Presque tous les gènes étudiés montrent une expression plus élevée dans l'hippocampe au jour 1 comparé au jour 9, alors qu'une expression accrue a été trouvée dans le cortex retrosplenial au jour 9. Nous pouvons observer ces adaptations moléculaires avec un retard court de 45 minutes après la fin de la tâche. Cependant, 6 heures après l'entraînement, une expression de gènes élevée a été trouvée au jour 9 (comparé à jour 1) dans les deux régions, suggérant que seulement un jour d'entraînement ne suffit pas pour détecter des modifications transcriptionelles plusieurs heures après la tâche. Ainsi, les données d'expression de gènes corroborent les résultats 2DG indiquant un transfert d'information dans le temps (de jour 1 à jour 9) et dans l'espace (de l'hippocampe au cortex retrosplenial), et ceci à un niveau cellulaire et moléculaire. D'ailleurs, la tâche d'apprentissage semble modifier le couplage métabolique neurone-glie, puisque de nombreux gènes impliqués dans ce couplage sont induits. Ces observations suggèrent un rôle important de la glie dans les mécanismes de plasticité du système nerveux.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9+/-8.9 nm and 4.7+/-0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively.