863 resultados para Spatial Durbin model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella is the second most commonly reported human foodborne pathogen in England and Wales, and antimicrobial-resistant strains of Salmonella are an increasing problem in both human and veterinary medicine. In this work we used a generalized linear spatial model to estimate the spatial and temporal patterns of antimicrobial resistance in Salmonella Typhimurium in England and Wales. Of the antimicrobials considered we found a common peak in the probability that an S. Typhimurium incident will show resistance to a given antimicrobial in late spring and in mid to late autumn; however, for one of the antimicrobials (streptomycin) there was a sharp drop, over the last 18 months of the period of investigation, in the probability of resistance. We also found a higher probability of resistance in North Wales which is consistent across the antimicrobials considered. This information contributes to our understanding of the epidemiology of antimicrobial resistance in Salmonella.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to run General Circulation Models (GCMs) at ever-higher horizontal resolutions has meant that tropical cyclone simulations are increasingly credible. A hierarchy of atmosphere-only GCMs, based on the Hadley Centre Global Environmental Model (HadGEM1), with horizontal resolution increasing from approximately 270km to 60km (at 50N), is used to systematically investigate the impact of spatial resolution on the simulation of global tropical cyclone activity, independent of model formulation. Tropical cyclones are extracted from ensemble simulations and reanalyses of comparable resolutions using a feature-tracking algorithm. Resolution is critical for simulating storm intensity and convergence to observed storm intensities is not achieved with the model hierarchy. Resolution is less critical for simulating the annual number of tropical cyclones and their geographical distribution, which are well captured at resolutions of 135km or higher, particularly for Northern Hemisphere basins. Simulating the interannual variability of storm occurrence requires resolutions of 100km or higher; however, the level of skill is basin dependent. Higher resolution GCMs are increasingly able to capture the interannual variability of the large-scale environmental conditions that contribute to tropical cyclogenesis. Different environmental factors contribute to the interannual variability of tropical cyclones in the different basins: in the North Atlantic basin the vertical wind shear, potential intensity and low-level absolute vorticity are dominant, while in the North Pacific basins mid-level relative humidity and low-level absolute vorticity are dominant. Model resolution is crucial for a realistic simulation of tropical cyclone behaviour, and high-resolution GCMs are found to be valuable tools for investigating the global location and frequency of tropical cyclones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We model the behavior of rational forward-looking agents in a spatial economy. The economic geography structure is built on Fujita et al. (1999)'s racetrack economy. Workers choose optimally what to consume at each period, as well as which spatial itinerary to follow in the geographical space. The spatial extent of the resulting agglomerations increases with the taste for variety and the expenditure share on manufactured goods, and decreases with transport costs. Because forward-looking agents anticipate the future formation of agglomerations, they are more responsive to spatial utility differentials than myopic agents. As a consequence, the emerging agglomerations are larger under perfect foresight spatial adjustments than under myopic ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of mainstream economic analysis assumes that markets adjust smoothly, through prices, to changes in economic conditions. However, this is not necessarily the case for local housing markets, whose spatial structures may exhibit persistence, so that conditions may not be those most suited to the requirements of modern-day living. Persistence can arise from the existence of transaction costs. The paper tests the proposition that housing markets in Inner London exhibit a degree of path dependence, through the construction of a three-equation model, and examines the impact of variables constructed for the 19th and early 20th centuries on modern house prices. These include 19th-century social structures, slum clearance programmes and the 1908 underground network. Each is found to be significant. The tests require the construction of novel historical datasets, which are also described in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The realistic representation of rainfall on the local scale in climate models remains a key challenge. Realism encompasses the full spatial and temporal structure of rainfall, and is a key indicator of model skill in representing the underlying processes. In particular, if rainfall is more realistic in a climate model, there is greater confidence in its projections of future change. In this study, the realism of rainfall in a very high-resolution (1.5 km) regional climate model (RCM) is compared to a coarser-resolution 12-km RCM. This is the first time a convection-permitting model has been run for an extended period (1989–2008) over a region of the United Kingdom, allowing the characteristics of rainfall to be evaluated in a climatological sense. In particular, the duration and spatial extent of hourly rainfall across the southern United Kingdom is examined, with a key focus on heavy rainfall. Rainfall in the 1.5-km RCM is found to be much more realistic than in the 12-km RCM. In the 12-km RCM, heavy rain events are not heavy enough, and tend to be too persistent and widespread. While the 1.5-km model does have a tendency for heavy rain to be too intense, it still gives a much better representation of its duration and spatial extent. Long-standing problems in climate models, such as the tendency for too much persistent light rain and errors in the diurnal cycle, are also considerably reduced in the 1.5-km RCM. Biases in the 12-km RCM appear to be linked to deficiencies in the representation of convection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a model calibrated to Khao Yai National Park in Thailand, this paper highlights the importance of generating explicitly spatial and temporal data for developing management plans for tropical protected forests. Spatial and temporal cost-benefit analysis should account for the interactions between different land uses – such as the benefits of contiguous areas of preserved land and edge effects – and the realities of villagers living near forests who rely on extracted resources. By taking a temporal perspective, this paper provides a rare empirical assessment of the importance of quasi-option values when determining optimal management plans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A necessary condition for a good probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal observed probabilities verified over a large number of cases. As climate change trends are now emerging from the natural variability, we can apply this concept to climate predictions and compute the reliability of simulated local and regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble of climate model simulations prepared for the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5). With only a single verification time, the verification is over the spatial dimension. The local temperature trends appear to be reliable. However, when the global mean climate response is factored out, the ensemble is overconfident: the observed trend is outside the range of modelled trends in many more regions than would be expected by the model estimate of natural variability and model spread. Precipitation trends are overconfident for all trend definitions. This implies that for near-term local climate forecasts the CMIP5 ensemble cannot simply be used as a reliable probabilistic forecast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlations between various chemical species simulated by the Canadian Middle Atmosphere Model, a general circulation model with fully interactive chemistry, are considered in order to investigate the general conditions under which compact correlations can be expected to form. At the same time, the analysis serves to validate the model. The results are compared to previous work on this subject, both from theoretical studies and from atmospheric measurements made from space and from aircraft. The results highlight the importance of having a data set with good spatial coverage when working with correlations and provide a background against which the compactness of correlations obtained from atmospheric measurements can be confirmed. It is shown that for long-lived species, distinct correlations are found in the model in the tropics, the extratropics, and the Antarctic winter vortex. Under these conditions, sparse sampling such as arises from occultation instruments is nevertheless suitable to define a chemical correlation within each region even from a single day of measurements, provided a sufficient range of mixing ratio values is sampled. In practice, this means a large vertical extent, though the requirements are less stringent at more poleward latitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamical downscaling of Global Climate Models (GCMs) through regional climate models (RCMs) potentially improves the usability of the output for hydrological impact studies. However, a further downscaling or interpolation of precipitation from RCMs is often needed to match the precipitation characteristics at the local scale. This study analysed three Model Output Statistics (MOS) techniques to adjust RCM precipitation; (1) a simple direct method (DM), (2) quantile-quantile mapping (QM) and (3) a distribution-based scaling (DBS) approach. The modelled precipitation was daily means from 16 RCMs driven by ERA40 reanalysis data over the 1961–2000 provided by the ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts) project over a small catchment located in the Midlands, UK. All methods were conditioned on the entire time series, separate months and using an objective classification of Lamb's weather types. The performance of the MOS techniques were assessed regarding temporal and spatial characteristics of the precipitation fields, as well as modelled runoff using the HBV rainfall-runoff model. The results indicate that the DBS conditioned on classification patterns performed better than the other methods, however an ensemble approach in terms of both climate models and downscaling methods is recommended to account for uncertainties in the MOS methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales (greater than 100,000 km2), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small spatial scales (lower than 10,000 km2). Large area models can contribute to monitoring or forecasting regional patterns of variability in maize production in the region, providing a basis for agricultural decision making, and Glam‑Maize is one of the alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications