943 resultados para Sparse matrices
Resumo:
2000 Mathematics Subject Classification: 42C05.
Resumo:
Христина Костадинова, Красимир Йорджев - В статията се обсъжда представянето на произволна бинарна матрица с помощта на последователност от цели неотрицателни числа. Разгледани са някои предимства и недостатъци на това представяне като алтернатива на стандартното, общоприето представяне чрез двумерен масив. Показано е, че представянето на бинарните матрици с помощта на наредени n-торки от естествени числа води до по-бързи алгоритми и до съществена икономия на оперативна памет. Използуван е апарата на обектно-ориентираното програмиране със синтаксиса и семантиката на езика C++.
Resumo:
2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.
Resumo:
2000 Mathematics Subject Classification: 65H10.
Resumo:
In this paper, we give several results for majorized matrices by using continuous convex function and Green function. We obtain mean value theorems for majorized matrices and also give corresponding Cauchy means, as well as prove that these means are monotonic. We prove positive semi-definiteness of matrices generated by differences deduced from majorized matrices which implies exponential convexity and log-convexity of these differences and also obtain Lypunov's and Dresher's type inequalities for these differences.
Resumo:
2000 Mathematics Subject Classification: 15A29.
Resumo:
Long reach-passive optical networks (LR-PON) are being proposed as a means of enabling ubiquitous fiber-to-the-home (FTTH) by massive sharing of network resources and therefore reducing per customer costs to affordable levels. In this paper, we analyze the chain solutions for LR-PON deployment in urban and rural areas at 100-Gb/s point-to-point transmission using dual polarization-quaternary phase shift-keying (DP-QPSK) modulation. The numerical analysis shows that with appropriate finite impulse response (FIR) filter designs, 100-Gb/s transmission can be achieved with at least 512 way split and up to 160 km total distance, which is sufficient for many of the optical paths in a practical situation, for point-to-point link from one LR-PON to another LR-PON through the optical switch at the metro nodes and across a core light path through the core network without regeneration.
Resumo:
Contemporary models of contrast integration across space assume that pooling operates uniformly over the target region. For sparse stimuli, where high contrast regions are separated by areas containing no signal, this strategy may be sub-optimal because it pools more noise than signal as area increases. Little is known about the behaviour of human observers for detecting such stimuli. We performed an experiment in which three observers detected regular textures of various areas, and six levels of sparseness. Stimuli were regular grids of horizontal grating micropatches, each 1 cycle wide. We varied the ratio of signals (marks) to gaps (spaces), with mark:space ratios ranging from 1 : 0 (a dense texture with no spaces) to 1 : 24. To compensate for the decline in sensitivity with increasing distance from fixation, we adjusted the stimulus contrast as a function of eccentricity based on previous measurements [Baldwin, Meese & Baker, 2012, J Vis, 12(11):23]. We used the resulting area summation functions and psychometric slopes to test several filter-based models of signal combination. A MAX model failed to predict the thresholds, but did a good job on the slopes. Blanket summation of stimulus energy improved the threshold fit, but did not predict an observed slope increase with mark:space ratio. Our best model used a template matched to the sparseness of the stimulus, and pooled the squared contrast signal over space. Templates for regular patterns have also recently been proposed to explain the regular appearance of slightly irregular textures (Morgan et al, 2012, Proc R Soc B, 279, 2754–2760)
Resumo:
Cooperative Greedy Pursuit Strategies are considered for approximating a signal partition subjected to a global constraint on sparsity. The approach aims at producing a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation, and is realized by means of i)forward steps for the upgrading of an approximation and/or ii) backward steps for the corresponding downgrading. The advantage of the strategy is illustrated by approximation of music signals using redundant trigonometric dictionaries. In addition to rendering stunning improvements in sparsity with respect to the concomitant trigonometric basis, these dictionaries enable a fast implementation of the approach via the Fast Fourier Transform
Resumo:
Microporous polycaprolactone (PCL) matrices loaded with hydrophobic steroidal drugs or a hydrophilic drug - pilocarpine hydrochloride - were produced by precipitation casting using solutions of PCL in acetone. The efficiency of steroid incorporation in the final matrix (progesterone (56 %) testosterone (46 %) dexamethasone (80 %)) depended on the nature of the drug initially co-dissolved in the PCL solution. Approximately 90 % w/w of the initial load of progesterone, 85 % testosterone and 50 % dexamethasone was released from the matrices in PBS at 37°C over 8 days. Pilocarpine hydrochloride (PH)-loaded PCL matrices, prepared by dispersion of powder in PCL solution, released 70-90 % of the PH content over 12 days in PBS. Application of the Higuchi model revealed that the kinetics of steroid and PH release were consistent with a Fickian diffusion mechanism with corresponding diffusion coefficients of 5.8 × 10-9 (progesterone), 3.9 × 10 -9 (testosterone), 7.1 × 10-10 (dexamethasone) and 22 × 10-8 cm2/s (pilocarpine hydrochloride). The formulation techniques described are expected to be useful for production of implantable, insertable and topical devices for sustained delivery of a range of bioactive molecules of interest in drug delivery and tissue engineering.
Resumo:
Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.
Resumo:
A distance-based inconsistency indicator, defined by the third author for the consistency-driven pairwise comparisons method, is extended to the incomplete case. The corresponding optimization problem is transformed into an equivalent linear programming problem. The results can be applied in the process of filling in the matrix as the decision maker gets automatic feedback. As soon as a serious error occurs among the matrix elements, even due to a misprint, a significant increase in the inconsistency index is reported. The high inconsistency may be alarmed not only at the end of the process of filling in the matrix but also during the completion process. Numerical examples are also provided.
Resumo:
Incomplete pairwise comparison matrix was introduced by Harker in 1987 for the case in which the decision maker does not fill in the whole matrix completely due to, e.g., time limitations. However, incomplete matrices occur in a natural way even if the decision maker provides a completely filled in matrix in the end. In each step of the total n(n–1)/2, an incomplete pairwise comparison is given, except for the last one where the matrix turns into complete. Recent results on incomplete matrices make it possible to estimate inconsistency indices CR and CM by the computation of tight lower bounds in each step of the filling in process. Additional information on ordinal inconsistency is also provided. Results can be applied in any decision support system based on pairwise comparison matrices. The decision maker gets an immediate feedback in case of mistypes, possibly causing a high level of inconsistency.
Resumo:
Pairwise comparison is a popular assessment method either for deriving criteria-weights or for evaluating alternatives according to a given criterion. In real-world applications consistency of the comparisons rarely happens: intransitivity can occur. The aim of the paper is to discuss the relationship between the consistency of the decision maker—described with the error-free property—and the consistency of the pairwise comparison matrix (PCM). The concept of error-free matrix is used to demonstrate that consistency of the PCM is not a sufficient condition of the error-free property of the decision maker. Informed and uninformed decision makers are defined. In the first stage of an assessment method a consistent or near-consistent matrix should be achieved: detecting, measuring and improving consistency are part of any procedure with both types of decision makers. In the second stage additional information are needed to reveal the decision maker’s real preferences. Interactive questioning procedures are recommended to reach that goal.
Resumo:
Our research focused on testing various characteristics of pairwise comparison (PC) matrices in controlled experiments. About 270 students have been involved in the test exercises and the final pool contained 450 matrices. Our team conducted experiments with matrices of different size obtained from different types of MADM problems. The matrix elements have been generated by different questioning orders, too. The cases have been divided into 18 subgroups according to the key factors to be analyzed. The testing environment made it possible to analyze the dynamics of inconsistency as the number of elements increased in a given case. Various types of inconsistency indices have been applied. The consequent behavior of the decision maker has also been analyzed in case of incomplete matrices using indicators to measure the deviation from the final ranking of alternatives and from the final score vector.