840 resultados para Slow Strain Rate Testing
Resumo:
Two series of tensile tests with constant crosshead speeds (ranging from 5 to 200 mm/min) and tensile relaxation tests (at strains from 0.03 to 0.09) were performed on low-density polyethylene in the subyield region of deformations at room temperature. Mechanical tests were carried out on nonannealed specimens and on samples annealed for 24 h at the temperatures T = 50, 60, 70, 80, and 100 degreesC. Constitutive equations were derived for the time-dependent response of semicrystalline polymers at isothermal deformations with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical crosslinks, and lamellar blocks). The network is thought of as an ensemble of mesoregions linked with each other. The viscoelastic behavior of a polymer is modeled as a thermally induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects sliding of junctions in the network with respect to their reference positions driven by macrostrains. Stress-strain relations involve five material constants that were found by fitting the observations.
Resumo:
Three series of tensile tests with constant cross-head speeds (ranging from 5 to 200 mm/min), tensile relaxation tests (at strains from 0.03 to 0.09) and tensile creep tests (at stresses from 2.0 to 6.0 MPa) are performed on low-density polyethylene at room temperature. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal deformation with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical cross-links and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. The viscoelastic behavior of a polymer is modelled as thermally-induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects mutual displacement of meso-domains driven by macro-strains. Stress-strain relations for uniaxial deformation are developed by using the laws of thermodynamics. The governing equations involve five material constants that are found by fitting the observations. Fair agreement is demonstrated between the experimental data and the results of numerical simulation.
Resumo:
The brittle-ductile transition (BDT) of particle toughened polymers was extensively studied in terms of morphology, strain rate, and temperature. The calculation results showed that both the critical interparticle distance (IDc) and the brittle-ductile transition temperature (T-BD) of polymers were a function of strain rate. The IDc reduced nonlinearly with increasing strain rate, whereas T-BD increased considerably with increasing strain rate. The effects of temperature and plasticizer concentration on BDT were discussed using a percolation model. The results were in agreement with the experiments.
Resumo:
Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.
Resumo:
In this study, we established a correlation between cavitations volume and the brittle-ductile transition (BDT) for particle toughened thermoplastics. The brittle-ductile transition temperature (T-BD) was calculated as a function of T* and interparticle distance (ED), respectively, where T* was a parameter related to the volume of cavitations. The results showed that the smaller the cavitations volume, the higher the brittle-ductile transition temperature. The calculations correlated well with the experimental data. With respect to rubber particle, the rigid particle was too hard to be voided during deformation, thereby the TED of the blend was much higher than that of rubber particle toughened thermoplastic. This was a main reason that rubber particle could toughen thermoplastics effectively, whereas rigid particle could not.
Resumo:
The evolution of crystallinity and polymorphism during hot-drawing of amorphous poly(ether ether ketone ketone) (PEEKK) as a function of strain rate, draw ratio, and temperature was investigated. In modification I, the competition of chain extension and molecular alignment is responsible for the strain rate and temperature dependence. Modification II crystallization is basically controlled by chain extension during stretching. The former can be transformed into the latter via relaxation during stretching or annealing at elevated temperature.
Resumo:
The viscoelastic behavior of phenolphthalein poly(ether ketone) (PEK-C) and its relationship to yielding was studied. The following phenomena were observed: (1) The relaxation behavior at strain near yield closely approximated that at low strain but near the T-g; (2) the temperature and strain rate dependence of yield stress could be modeled by the one-process Eyring theory and the value of the activation volume was the same as that of the glass transition; and (3) according to the Zhurkov-Bueche equation, the cu transition was related to the yield behavior. All these results indicated that the glass transition was the main factor that controlled the yield behavior. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The plastic zone size and crack opening displacement of phenolphthalein polyether ketone (PEK-C) at various conditions were investigated. Both of them increase with increasing temperature (decreasing strain rate), i.e. yield stress steadily falls. Thus, the mechanism increasing the yield stress leads to increased constraint in the crack tip and a corresponding reduction in the crack opening displacement and the plastic deformation zone. The effect of the plastic deformation on the fracture toughness is also discussed.
Resumo:
The static and impact fracture toughness of phenolphthalein polyether ketone (PEK-C) were studied at different temperatures. The static fracture toughness of PEK-C was evaluated via the linear elastic fracture mechanics (LEFM) and the J-integral analysis. Impact fracture toughness was also analyzed using the LEFM approach. Temperature and strain rate effects on the fracture toughness were also studied. The enhancement in static fracture toughness at 70 degrees C was thought to be caused by plastic crack tip blunting. The increase in impact fracture toughness with temperature was attributed two different mechanisms, namely, the relaxation process in a relatively low temperature and thermal blunting of the crack tip at higher temperature. The temperature-dependent fracture toughness data obtained in static tests could be horizontally shifted to match roughly the data for impact tests, indicating the existence of a time-temperature equivalence relationship. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Phenolphthalein polyether ketone (PEK-C) exhibits a marked tensile yield behaviour. The yield stress depends on strain rate and the activation volume V could be evaluated from the data of the yield stress. From the creep and stress relaxation behaviour,
Resumo:
A numerical analysis of galvanic corrosion of hot-dip galvanized steel immersed in seawater was presented. The analysis was based on the boundary element methods (BEMs) coupled with Newton-Raphson iterative technique to treat the nonlinear boundary conditions, which were determined by the experimental polarization curves. Results showed that galvanic current density concentrates on the boundary of steel substrate and zinc coating, and the sacrificial protection of zinc coating to steel substrate results in overprotection of steel cathode. Not only oxygen reduction but also hydrogen reduction could occur as cathode reactions, which probably led up to the adsorption and absorption of hydrogen atoms. Flat galvanized steel tensile sample shows a brittle behavior similar to hydrogen embrittlement according to the SSRT (show strain rate test) in seawater.
Resumo:
在多机器人系统中 ,评价一个机器人行为的好坏常常依赖于其它机器人的行为 ,此时必须采用组合动作以实现多机器人的协作 ,但采用组合动作的强化学习算法由于学习空间异常庞大而收敛得极慢 .本文提出的新方法通过预测各机器人执行动作的概率来降低学习空间的维数 ,并应用于多机器人协作任务之中 .实验结果表明 ,基于预测的加速强化学习算法可以比原始算法更快地获得多机器人的协作策略 .
Resumo:
The velocity field is important to investigate the motion and strain parameters of the block. It is also important to investigate the deformation of the fault, for example, the accumulation of strain and stress, at the boundary of the block. The dislocation model is a classic method to simulate the velocity field. In dislocation model, the aseismic crustal deformation is regarded as the sum of the rigid block motion and the effect of the locked fault. We modify the dislocation model in two aspects. Firstly, the block motion is assumed to be the sum of rotation and linear strain rather than the rigid motion. Secondly, the elastic layered-earth model rather than the homogenous half-space model is applied to calculate the effect of the locked part. The 1990~1995 annually Global Position System (GPS) velocity data of the Taiwan area are used in our dislocation model. The misfit of our modified model is smaller than that of the origin model clearly. Our simulation shows, in eastern Coastal Range, the velocity decreases northward rapidly from Chimei Fault, which may result from the high crustal compressive rate of about 30 mm•a-1 at Chimei Fault. The lock of fault in southern part is stronger than that in northern part generally. In western Taiwan, the most strongly locked faults appear in the southern Coastal Plain where many disaster earthquakes occur frequently. The calculated strain and rotation rates consist with previous results in most areas. The strain rate field reveals the nearly NW-SE compression in most parts of Taiwan with a fan-shaped distribution. The rotation rate field reveals anticlockwise rotation in eastern and southern Taiwan while clockwise rotation in western and northern Taiwan, generally.
Resumo:
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.
Resumo:
Transition from brittle fracture to ductile creep of the Gaojiabian diabase is investigated as a function of temperature and water content. Experiments are conducted at 500 MPa confining pressure, with strain rate being 1 * 10~(-4) and temperature from 300 ℃ to 800 ℃. The transition from semibrittle to ductile flow of dry diabase occurs at temperatures between 700 ℃ and 750 ℃, while the transition of wet diabase takes place at about 500 ℃. The transition temperature in the wet diabase is about 200 ℃ lower than in the dry diabase. The strength of both dry and wet samples is temperature insensitive in brittle-semibrittle regime and temperature sensitive in ductile regime. At the same conditions, water within the sample could weaken the strength of wet samples. The microstructures of dry and wet samples are different. In experimental conditions, feldspars show two different deformation mechanisms, the first acting in brittle and semibrittle regime and the second acting in plastic regime, and water must have greatly affected the two mechanisms. Strength of pyroxene is lower than that of feldspar at low temperature. Pyroxene can be transformed to hornblende in deformation process and this transformation is quite temperature and water dependent. Feldspar plays a key role in the deformation in its first mechanism regime, and no dominant minerals are identified in the second mechanism regime of feldspar. The result of FTIR analysis show that water exists in wet sample in the form of -OH.