881 resultados para Sleep Onset Latency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 59-year-old kidney recipient was diagnosed with a late onset of severe chronic inflammatory demyelinating polyradiculoneuropathy and almost fully recovered after stopping tacrolimus and one course of intravenous immunoglobulin treatment. Unique features of this patient are the unusually long time lapse between initiation of tacrolimus and the adverse effect (10 years), a strong causality link and several arguments pointing toward an inflammatory etiology. When facing new neurological signs and symptoms in graft recipients, it is important to bear in mind the possibility of a drug-induced adverse event. Discontinuation of the suspect drug and immunomodulation are useful treatment options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Previous studies on the impact of cannabis use disorders (CU) on outcome in psychosis were predominantly based on non representative samples, often have not controlled for confounders and rarely focused on adolescent patients. Thus, the aims of the present study were to assess: (i) prevalence of CU; (ii) baseline and pretreatment differences between CU and those without CU (NCU); (iii) the impact of baseline and course of CU on 18-month outcomes in a representative cohort of adolescents with early onset first episode psychosis (EOP). METHODS: The sample comprised 99 adolescents (age 14 to 18) with EOP (onset age 14 to 17), admitted to the Early Psychosis Prevention and Intervention Centre in Australia. Data were collected from medical files using a standardized questionnaire. RESULTS: Prevalence of lifetime CU was 65.7%, of current CU at baseline 53.5%, and of persistent CU throughout treatment 26.3%. Baseline CU compared to NCU had significantly higher illness-severity, lower psychosocial functioning, less insight, lower premorbid functioning and longer duration of untreated psychosis. Compared to all other groups, only persistent CU was linked to worse outcomes and more service disengagement. Effect sizes were medium controlling for relevant confounders. Medication non-adherence did not explain the association between persistent CU and worse outcome. CONCLUSIONS: Baseline CU was associated with worse baseline characteristics, but only persistent CU was linked with worse outcome. About half of those with baseline CU reduced cannabis during treatment. For these, effectively treating the psychotic disorder may already be beneficial. However, future research is necessary on the reasons for persistent CU in EOP and its treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of improving human health, scientists have been using an approach referred to as translational research, in which they aim to convey their laboratory discoveries into clinical applications to help prevent and cure disease. Such discoveries often arise from cellular, molecular, and physiological studies that progress to the clinical level. Most of the translational work is done using animal models that share common genes, molecular pathways, or phenotypes with humans. In this article, we discuss how translational work is carried out in various animal models and illustrate its relevance for human sleep research and sleep-related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : The principal focus of this work was to study the molecular changes leading to the development of diabetic peripheral neuropathy (DPN). DPN is the most common complication associated with both type I and II diabetes mellitus (DM). This pathology is the leading cause of non-traumatic amputations. Even though the pathological and morphological changes underlying DPN are relatively well described, the implicated molecular mechanisms remain poorly understood. The following two approaches were developed to study the development of DPN in a rodent model of DM type I. As a first approach, we studied the implication of lipid metabolism in DPN phenotype, concentrating on Sterol Response Element Binding Protein (SREBP)-lc which is the key regulator of storage lipid metabolism. We showed that SREBP-1c was expressed in peripheral nerves and that its expression profile followed the expression of genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurium of peripheral nerves was dependant upon nutritional status and this expression was also perturbed in type I diabetes. In line with this, we showed that insulin elevated the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type I diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of DPN. As a second approach, we performed a comprehensive analysis of the molecular changes associated with DPN in the Akital~1~+ mouse which is a model of spontaneous early-onset type I diabetes mellitus. This mouse expresses a mutated non-functional isoform of insulin, leading to hypoinsulinemia and hyperglycaemia. To determine the onset of DPN, weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Akital+/+ mice during the first three months of life. A decrease in MNCV was evident akeady one week after the onset of hyperglycemia. To explore the molecular changes associated with the development of DPN in these mice, we performed gene expression profiling using sciatic nerve endoneurium and dorsal root ganglia (DRG) isolated from early diabetic male Akita+/+ mice and sex-matched littermate controls. No major transcriptional changes were detected either in the DRG or in the sciatic nerve endoneurium. This experiment indicates that the phenotypic changes observed during the development of DPN are not correlated with major transcriptional alterations, but mainly with alterations at the protein level. Résumé Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1 c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita+/+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique. Résumé : Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita~~Z~+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG and EEG recordings during naturally occurring spindles in healthy humans. As expected, EEG was highly coherent across the scalp, with consistent topography across spindles. In contrast, the simultaneously recorded MEG was not synchronous, but varied strongly in amplitude and phase across locations and spindles. Overall, average coherence between pairs of EEG sensors was approximately 0.7, whereas MEG coherence was approximately 0.3 during spindles. Whereas 2 principle components explained approximately 50% of EEG spindle variance, >15 were required for MEG. Each PCA component for MEG typically involved several widely distributed locations, which were relatively coherent with each other. These results show that, in contrast to current models based on animal experiments, multiple asynchronous neural generators are active during normal human sleep spindles and are visible to MEG. It is possible that these multiple sources may overlap sufficiently in different EEG sensors to appear synchronous. Alternatively, EEG recordings may reflect diffusely distributed synchronous generators that are less visible to MEG. An intriguing possibility is that MEG preferentially records from the focal core thalamocortical system during spindles, and EEG from the distributed matrix system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess health-related quality of life (HRQOL) in abatacept-treated children/adolescents with juvenile idiopathic arthritis (JIA). METHODS: In this phase III, double-blind, placebo-controlled trial, subjects with active polyarticular course JIA and an inadequate response/intolerance to ≥1 disease-modifying antirheumatic drug (including biologics) received abatacept 10 mg/kg plus methotrexate (MTX) during the 4-month open-label period (period A). Subjects achieving the American College of Rheumatology Pediatric 30 criteria for improvement (defined "responders") were randomized to abatacept or placebo (plus MTX) in the 6-month double-blind withdrawal period (period B). HRQOL assessments included 15 Child Health Questionnaire (CHQ) health concepts plus the physical (PhS) and psychosocial summary scores (PsS), pain (100-mm visual analog scale), the Children's Sleep Habits Questionnaire, and a daily activity participation questionnaire. RESULTS: A total of 190 subjects from period A and 122 from period B were eligible for analysis. In period A, there were substantial improvements across all of the CHQ domains (greatest improvement was in pain/discomfort) and the PhS (8.3 units) and PsS (4.3 units) with abatacept. At the end of period B, abatacept-treated subjects had greater improvements versus placebo in all domains (except behavior) and both summary scores. Similar improvement patterns were seen with pain and sleep. For participation in daily activities, an additional 2.6 school days/month and 2.3 parents' usual activity days/month were gained in period A responders with abatacept, and further gains were made in period B (1.9 versus 0.9 [P = 0.033] and 0.2 versus -1.3 [P = 0.109] school days/month and parents' usual activity days/month, respectively, in abatacept- versus placebo-treated subjects). CONCLUSION: Improvements in HRQOL were observed with abatacept, providing real-life tangible benefits to children with JIA and their parents/caregivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide studies in major depression have identified few replicated associations, potentially due to heterogeneity within the disorder. Several studies have suggested that age at onset (AAO) can distinguish sub-types of depression with specific heritable components. This paper investigates the role of AAO in the genetic susceptibility for depression using genome-wide association data on 2,746 cases and 1,594 screened controls from the RADIANT studies, with replication performed in 1,471 cases and 1,403 controls from two Munich studies. Three methods were used to analyze AAO: First a time-to-event analysis with controls censored, secondly comparing controls to case-subsets defined using AAO cut-offs, and lastly analyzing AAO as a quantitative trait. In the time-to-event analysis three SNPs reached suggestive significance (P < 5E-06), overlapping with the original case-control analysis of this study. In a case-control analysis using AAO thresholds, SNPs in 10 genomic regions showed suggestive association though again none reached genome-wide significance. Lastly, case-only analysis of AAO as a quantitative trait resulted in 5 SNPs reaching suggestive significance. Sex specific analysis was performed as a secondary analysis, yielding one SNP reaching genome-wide significance in early-onset males. No SNPs achieved significance in the replication study after correction for multiple testing. Analysis of AAO as a quantitative trait did suggest that, across all SNPs, common genetic variants explained a large proportion of the variance (51%, P = 0.04). This study provides the first focussed analysis of the genetic contribution to AAO in depression, and establishes a statistical framework that can be applied to a quantitative trait underlying any disorder. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of GABA(B) receptors in sleep is still poorly understood. GHB (γ-hydroxybutyric acid) targets these receptors and is the only drug approved to treat the sleep disorder narcolepsy. GABA(B) receptors are obligate dimers comprised of the GABA(B2) subunit and either one of the two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b). To better understand the role of GABA(B) receptors in sleep regulation, we performed electroencephalogram (EEG) recordings in mice devoid of functional GABA(B) receptors (1(-/-) and 2(-/-)) or lacking one of the subunit 1 isoforms (1a(-/-) and 1b(-/-)). The distribution of sleep over the day was profoundly altered in 1(-/-) and 2(-/-) mice, suggesting a role for GABA(B) receptors in the circadian organization of sleep. Several other sleep and EEG phenotypes pointed to a more prominent role for GABA(B1a) compared with the GABA(B1b) isoform. Moreover, we found that GABA(B1a) protects against the spontaneous seizure activity observed in 1(-/-) and 2(-/-) mice. We also evaluated the effects of the GHB-prodrug GBL (γ-butyrolactone) and of baclofen (BAC), a high-affinity GABA(B) receptor agonist. Both drugs induced a state distinct from physiological sleep that was not observed in 1(-/-) and 2(-/-) mice. Subsequent sleep was not affected by GBL whereas BAC was followed by a delayed hypersomnia even in 1(-/-) and 2(-/-) mice. The differential effects of GBL and BAC might be attributed to differences in GABA(B)-receptor affinity. These results also indicate that all GBL effects are mediated through GABA(B) receptors, although these receptors do not seem to be involved in mediating the BAC-induced hypersomnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Sleep disordered breathing (SDB) is frequent in acute stroke patients and is associated with early neurologic worsening and poor outcome. Although continuous positive airway pressure (CPAP) effectively treats SDB, compliance is low. The objective of the present study was to assess the tolerance and the efficacy of a continuous high-flow-rate air administered through an open nasal cannula (transnasal insufflation, TNI), a less-intrusive method, to treat SDB in acute stroke patients. METHODS: Ten patients (age, 56.8 ± 10.7 years), with SDB ranging from moderate to severe (apnea-hypopnea index, AHI, >15/h of sleep) and on a standard sleep study at a mean of 4.8 ± 3.7 days after ischemic stroke (range, 1-15 days), were selected. The night after, they underwent a second sleep study while receiving TNI (18 L/min). RESULTS: TNI was well tolerated by all patients. For the entire group, TNI decreased the AHI from 40.4 ± 25.7 to 30.8 ± 25.7/h (p = 0.001) and the oxygen desaturation index >3% from 40.7 ± 28.4 to 31 ± 22.5/h (p = 0.02). All participants except one showed a decrease in AHI. The percentage of slow-wave sleep significantly increased with TNI from 16.7 ± 8.2% to 22.3 ± 7.4% (p = 0.01). There was also a trend toward a reduction in markers of sleep disruption (number of awakenings, arousal index). CONCLUSIONS: TNI improves SDB indices, and possibly sleep parameters, in stroke patients. Although these changes are modest, our findings suggest that TNI is a viable treatment alternative to CPAP in patients with SDB in the acute phase of ischemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult-onset Still's disease (AOSD) is a rare inflammatory disease characterized by the classical triad of daily fever, arthritis, and typical salmon-colored rash. Recent accumulation of knowledge, mostly arising from hereditary autoinflammatory diseases and from the systemic-onset juvenile idiopathic arthritis (sJIA), has given raise to new hypotheses on the pathophysiology of AOSD. In this review, we first discuss on the continuum between AOSD and sJIA. Then, we summarize current hypotheses on the underlying pathogenesis: (1) an infectious hypothesis; (2) an autoinflammatory hypothesis; (3) a lymphohistiocytic hypothesis; and (4) a hyperferritinemic hypothesis. Finally, we present the recent data suggesting that patients with AOSD fall into two distinct subgroups with different courses, one with prominent systemic features and one with chronic arthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.