687 resultados para Skeletal-muscle Mass
Resumo:
To investigate the mechanism by which beta-hydroxy-beta-methylbutyrate (HMB) attenuates the depression of protein synthesis in the skeletal muscle of cachectic mice, a study has been carried out in murine myotubes in the presence of proteolysis-inducing factor (PIF). PIF inhibited protein synthesis by 50% within 4 h, and this was effectively attenuated by HMB (25-50 muM). HMB (50 muM) alone stimulated protein synthesis, and this was attenuated by rapamycin (27 nM), an inhibitor of mammalian target of rapamycin (mTOR). Further evidence for an involvement of this pathway was shown by an increased phosphorylation of mTOR, the 70-kDa ribosomal S6 kinase (p70(S6k)), and initiation factor 4E-binding protein (4E-BP1) and an increased association of eukaryotic initiation factor 2 (eIF4E) with eIF4G. PIF alone induced a transient (1-2 h) stimulation of phosphorylation of mTOR and p70(S6k). However, in the presence of HMB, phosphorylation of mTOR, p70(S6k), and 4E-BP1 was increased, and inactive 4E-BP1-eIF4E complex was reduced, whereas the active eIF4G.eIF4E complex was increased, suggesting continual stimulation of protein synthesis. HMB alone reduced phosphorylation of elongation factor 2, but this effect was not seen in the presence of PIF. PIF induced autophosphorylation of the double-strand RNA-dependent protein kinase (PKR), leading to phosphorylation of eIF2 on the alpha-subunit, which would inhibit protein synthesis. However, in the presence of HMB, phosphorylation of PKR and eIF2alpha was attenuated, and this was also observed in skeletal muscle of cachectic mice administered HMB (0.25 g/kg). These results suggest that HMB attenuates the depression of protein synthesis by PIF in myotubes through multiple mechanisms.
Resumo:
Both proteolysis-inducing factor (PIF) and angiotensin II have been shown to produce a depression in protein synthesis in murine myotubes concomitant with an increased phosphorylation of eukaryotic initiation factor 2 (eIF2α). Both PIF and angiotensin II were shown to induce autophosphorylation of the RNA-dependent protein kinase (PKR), and an inhibitor of this enzyme completely attenuated the depression in protein synthesis and prevented the induction of eIF2α phosphorylation. The PKR inhibitor also completely attenuated the increase in protein degradation induced by PIF and angiotensin II and prevented the increase in proteasome expression and activity. To confirm these results myotubes were transfected with plasmids that express either wild-type PKR, or a catalytically inactive PKR variant, PKRΔ6. Myotubes expressing PKRΔ6 showed no increase in eIF2α phosphorylation in response to PIF or angiotensin II, no depression in protein synthesis, and no increase in protein degradation or increase in proteasome expression. Induction of the ubiquitin-proteasome pathway by PIF and angiotensin II has been linked to activation of the transcription factor nuclear factor-κB (NF-κB). Inhibition of PKR prevented nuclear migration of NF-κB in response to both PIF and angiotensin II, by preventing degradation of the inhibitor protein I-κB. Phosphorylation of PKR and eIF2α was also significantly increased in the gastrocnemius muscle of weight losing mice bearing the MAC16 tumor, suggesting that a similar process may be operative in cancer cachexia. These results provide a link between the depression of protein synthesis in skeletal muscle and the increase in protein degradation. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Background: To investigate factors responsible for muscle loss in cachexia changes in nucleic acid and protein levels have been determined and compared with those induced by a tumour-produced cachectic factor, proteolysis-inducing factor (PIF). Materials and Methods: Mice were transplanted with the MAC16 tumour, while non-tumour bearing mice received PIF (1.5 mg/kg; i.v.) over a 24 h period. Results: There was an exponential decrease in RNA and protein in gastrocnemius muscle with weight loss without an effect on the DNA content. Levels of myosin followed the decrease in total protein, while actin levels remained constant. There was also a significant loss of protein from soleus muscle and spleen, but not from heart, liver and kidney. PIF also produced a significant loss of RNA and protein in spleen and reduced the protein content of soleus muscle. Conclusion: This suggests that PIF may be responsible for changes in protein and RNA content of tissues with the development of cachexia.
Resumo:
Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-κB (NF-κB) in regulating muscle protein degradation and expression of the ubiquitin-proteasome proteolytic pathway in response to a tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine phosphorylation sites required for degradation of I-κBα, an NF-κB inhibitory protein, and allowed to differentiate into myotubes. Proteolysis-inducing factor induced degradation of I-κBα, nuclear accumulation of NF-κB and an increase in luciferase reporter gene activity in myotubes containing wild-type, but not mutant, I-κBα, proteins. Proteolysis-inducing factor also induced total protein degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same concentrations as those causing activation of NF-κB. Proteolysis-inducing factor also induced increased expression of the ubiquitin-proteasome pathway, as determined by 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the β-subunits of the proteasome, protein expression of 20S α-subunits and the 19S subunits MSSI and p42, as well as the ubiquitin conjugating enzyme, E214k, in cells containing wild-type, but not mutant, I-κBα. The ability of mutant I-κBα to inhibit PIF-induced protein degradation, as well as expression of the ubiquitin-proteasome pathway, confirms that both of these responses depend on initiation of transcription by NF-κB. © 2005 Cancer Research UK.
Resumo:
Loss of skeletal muscle is a major factor in the poor survival of patients with cancer cachexia. This study examines the mechanism of catabolism of skeletal muscle by a tumour product, proteolysis-inducing factor (PIF). Intravenous administration of PIF to normal mice produced a rapid decrease in body weight (1.55 ± 0.12 g in 24 h) that was accompanied by increased mRNA levels for ubiquitin, the Mr 14 000 ubiquitin carrier-protein, E2, and the C9 proteasome subunit in gastrocnemius muscle. There was also increased protein levels of the 20S proteasome core and 19S regulatory subunit, detectable by immunoblotting, suggesting activation of the ATP-ubiquitin-dependent proteolytic pathway. An increased protein catabolism was also seen in C2C12 myoblasts within 24 h of PIF addition with a bell-shaped dose-response curve and a maximal effect at 2-4 nM. The enhanced protein degradation was attenuated by anti-PIF antibody and by the proteasome inhibitors MG115 and lactacystin. Glycerol gradient analysis of proteasomes from PIF-treated cells showed an elevation in chymotrypsin-like activity, while Western analysis showed a dose-related increase in expression of MSSI, an ATPase that is a regulatory subunit of the proteasome, with a dose-response curve similar to that for protein degradation. These results confirm that PIF acts directly to stimulate the proteasome pathway in muscle cells and may play a pivotal role in protein catabolism in cancer cachexia. © 2001 Cancer Research Campaign.
Resumo:
Cancer cachexia is characterized by selective depletion of skeletal muscle protein reserves. Soleus muscles from mice bearing a cachexia-inducing tumor (MAC16) showed an increased protein degradation in vitro, as measured by tyrosine release, when compared with muscles from nontumor-bearing animals. After incubation under conditions that modify different proteolytic systems, lysosomal, calcium-dependent, and ATP-dependent proteolysis were found to contribute to the elevated protein catabolism. Treatment of mice bearing the MAC16 tumor with the polyunsaturated fatty acid, eicosapentaenoic acid (EPA), attenuated loss of body weight and significantly suppressed protein catabolism in soleus muscles through an inhibition of an ATP-dependent proteolytic pathway. The ATP-ubiquitin-dependent proteolytic pathway is considered to play a major role in muscle catabolism in cachexia, and functional proteasome activity, as determined by “chymotrypsin-like” enzyme activity, was significantly elevated in gastrocnemius muscle of mice bearing the MAC16 tumor as weight loss progressed. When animals bearing the MAC16 tumor were treated with EPA, functional proteasome activity was completely suppressed, together with attenuation of the expression of 20S proteasome a-subunits and the p42 regulator, whereas there was no effect on the expression of the ubiquitin-conjugating enzyme (E214k). These results suggest that EPA induces an attenuation of the up-regulation of proteasome expression in cachectic mice, and this was correlated with an increase in myosin expression, confirming retention of contractile proteins. EPA also inhibited growth of the MAC16 tumor in a dose-dependent manner, and this correlated with suppression of the expression of the 20S proteasome a-subunits in tumor cells, suggesting that this may be the mechanism of tumor growth inhibition. Thus EPA antagonizes loss of skeletal muscle proteins in cancer cachexia by down-regulation of proteasome expression, and this may also be the mechanism for inhibition of tumor growth.
Resumo:
Cancer cachexia encompases severe weight loss, characterised by the debilitating atrophy of adipose and skeletal muscle mass. Skeletal muscle proteolysis in cancer cachexia is mediated by a sulphated glycoprotein with a relative molecular mass of 24kDa, termed Proteolysis-Inducing Factor (PIF). PIF induced a significant increase in protein degradation, peaking at 4.2nM PIF (p<0.001), ‘chymotrypsin-like’ activity of the proteasome (p<0.001) and increased expression of components of the ATP-ubiquitin dependent proteolytic pathway. This was attenuated in vitro by pre-incubation with the PKC inhibitor calphostin C (100µM) and NF-kB the inhibitors SN50 (18µM), curcumin (50µM) and resveratrol (30µM), 2 hours prior to the addition of PIF. In vivo studies found the IKK inhibitor resveratrol (1mg/kg) to be successful in attenuating protein degradation (p<0.001) and upregulation of ubiquitin-dependent proteolysis in MAC16 tumour bearing mice. C2C12 myoblasts transfected with mutant IkBα and PKCα inserts did not elicit a PIF-induced response, suggesting the importance of the transcription factor NF-kB and PKC involvement in PIF signal transduction. 15(S)-HETE acts as an intracellular mediator of PIF and exerts an effect through the activation of PKC and subsequently IKK, which phosphorylates IkBα and allows NF-kB to migrate to the nucleus. This effect was negated with the PKC inhibitor calphostin C (300nM). A commercially produced PIF receptor antibody was raised in rabbits immunised with a peptide containing the partial N-terminal sequence of the PIF receptor. The PIF receptor antibody was successful in attenuating the PIF-induced increase in skeletal muscle catabolism and protein degradation in vitro at 10µg/ml (p<0.001) and 3.47mg/kg in vivo (p<0.001). The data suggest great potential in the development of this antibody as a therapy against cancer cachexia.
Resumo:
Cancer cachexia is characterised by selective depletion of skeletal muscle protein reserves. The ubiquitin-proteasome proteolytic pathway has been shown to be responsible for muscle wasting in a range of cachectic conditions including cancer cachexia. To establish the importance of this pathway in muscle wasting during cancer (and sepsis), a quantitative competitive RT-PCR (QcRT-PCR) method was developed to measure the mRNA levels of the proteasome sub units C2a and C5ß and the ubiquitin-conjugating enzyme E214k. Western blotting was also used to measure the 20S proteasome and E214k protein expression. In vivo studies in mice bearing a cachexia inducing murine colon adenocarcinoma (MAC16) demonstrated the effect of progressive weight loss on the mRNA and protein expression for 20S proteasome subunits, as well as the ubiquitin-conjugating enzyme, E214k, in gastrocnemius and pectoral muscles. QcRT-PCR measurements showed a good correlation between expression of the proteasome subunits (C2 and CS) and the E214k enzyme mRNA and weight loss in gastrocnemius muscle, where expression increased with increasing weight loss followed by a decrease in expression at higher weight losses (25-27%). Similar results were obtained in pectoral muscles, but with the expression being several fold lower in comparison to that in gastrocnemius muscle, reflecting the different degrees of protein degradation in the two muscles during the process of cancer cachexia. Western blot analysis of 20S and E214k protein expression followed a similar pattern with respect to weight loss as that found with mRNA. In addition, mRNA and protein expression of the 20S proteasome subunits and E214k enzyme was measured in biopsies from cachectic cancer patients, which also showed a good correlation between weight loss and proteasome expression, demonstrating a progressive increase in expression of the proteasome subunits and E214k mRNA and protein in cachectic patients with progressively increasing weight loss.The effect of the cachexia-inducing tumour product PIF (proteolysis inducing factor) and 15-hydroxyeicosatetraenoic acid (15-HETE), the arachidoinic acid metabolite (thought to be the intracellular transducer of PIF action) has also been determined. Using a surrogate model system for skeletal muscle, C2C12 myotubes in vitro, it was shown that both PIF and 15-HETE increased proteasome subunit expression (C2a and C5ß) as well as the E214k enzyme. This increase gene expression was attenuated by preincubation with EPA or the 15-lipoxygenase inhibitor CV-6504; immunoblotting also confirmed these findings. Similarly, in sepsis-induced cachexia in NMRI mice there was increased mRNA and protein expression of the 20S proteasome subunits and the E214k enzyme, which was inhibited by EPA treatment. These results suggest that 15-HETE is the intracellular mediator for PIF induced protein degradation in skeletal muscle, and that elevated muscle catabolism is accomplished through upregulation of the ubiquitin-proteasome-proteolytic pathway. Furthermore, both EPA and CV -6504 have shown anti-cachectic properties, which could be used in the future for the treatment of cancer cachexia and other similar catabolic conditions.
Resumo:
Hypochlorous acid (HOCl) concentration-dependently decreased ATPase activity and SH groups of pure Ca-ATPase from sarcoplasmic reticulum (SERCA) of rabbit skeletal muscle with IC(50) of 150 micromol/l and 6.6 micromol/l, respectively. This indicates that SH groups were not critical for impairment of Ca-ATPase activity. Pure Ca-ATPase activity was analysed individually with respect to both substrates, Ca(2+) and ATP. Concerning dependence of ATPase activity on HOCl (150 micromol/l) as a function of free Ca(2+) and ATP, V(max) of both dependences decreased significantly, while the affinities to individual substrates were not influenced, with the exception of the regulatory binding site of ATP. On increasing HOCl concentration, fluorescence of fluorescein-5-isothiocyanate (FITC) decreased, indicating binding of HOCl to nucleotide binding site of SERCA. A new fragment appeared at 75 kDa after HOCl oxidation of SR, indicating fragmentation of SERCA. Fragmentation may be associated with protein carbonyl formation. The density of protein carbonyl bands at 75 and 110 kDa increased concentration- and time-dependently. Trolox (250 micromol/l) recovered the Ca-ATPase activity decrease induced by HOCl, probably by changing conformational properties of the Ca-ATPase protein. Trolox inhibited FITC binding to SERCA.
Resumo:
Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C2C12 murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca2 +i, which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) also induced a rise in Ca2 +i, but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca2 +i induced by PIF and AngII was completely attenuated by the Zn2 + chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn2 +. The Ca2 +i rise induced by PIF was independent of the presence of extracellular Ca2 +, and attenuated by the Ca2 + pump inhibitor thapsigargin, suggesting that the Ca2 +i rise was due to release from intracellular stores. This rise in Ca2 +i induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca2 +i, which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.
Resumo:
Background - Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. Methods - Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. Results - Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40phox and p67phox along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. Conclusion - Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40phox and p67phox, were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.
Resumo:
Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 μM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome α-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E214k, also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-κBα, and increased nuclear accumulation of nuclear factor-κB (NF-κB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-κB activation by resveratrol (30 μM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-κB. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The ubiquitin-proteasome proteolytic pathway plays a major role in degradation of myofibrillar proteins in skeletal muscle during cancer cachexia. The end-product of this pathway is oligopeptides and these are degraded by the extralysomal peptidase tripeptidyl-peptidase II (TPPII) together with various aminopeptidases to form tripeptides and amino acids. To investigate if a relationship exists between the activity of the proteasome and TPPII, functional activities have been measured in gastrocnemius muscle of mice bearing the MAC16 tumour, and with varying extents of weight loss. TPPII activity was quantitated using the specific substrate Ala-Ala-Phe-7-amido-4-methylcoumarin, while proteasome activity was determined as the 'chymotrypsin-like' enzyme activity. Both proteasome proteolytic activity and TPPII activity increased in parallel with increasing weight loss, reaching a maximum at 16% weight loss, after which there was a progressive decrease in activity for both proteases with increasing weight loss. In murine myotubes, proteolysis-inducing factor, which is a sulphated glycoprotein produced by cachexia-inducing tumours, induced an increase in activity of both proteasome and TPPII, with an identical dose-response curve, and both activities were inhibited by eicosapentaenoic acid. These results suggest that the activities of both the proteasome and TPPII are regulated in a parallel manner in cancer cachexia, and that both are induced by the same factor and probably have the same intracellular signalling pathways and transcription factors. © 2004 Elsevier Ireland Ltd. All rights reserved.