953 resultados para Single molecule resolution microscopy
Resumo:
P130 A HIGH-RESOLUTION 2D/3D SEISMIC STUDY OF A THRUST FAULT ZONE IN LAKE GENEVA SWITZERLAND M. SCHEIDHAUER M. BERES D. DUPUY and F. MARILLIER Institute of Geophysics University of Lausanne 1015 Lausanne, Switzerland Summary A high-resolution three-dimensional (3D) seismic reflection survey has been conducted in Lake Geneva near the city of Lausanne Switzerland where the faulted molasse basement (Tertiary sandstones) is overlain by complex Quaternary sedimentary structures. Using a single 48-channel streamer an area of 1200 m x 600 m was surveyed in 10 days. With a 5-m shot spacing and a receiver spacing of 2.5 m in the inline direction and 7.5 m in the crossline direction, a 12-fold data coverage was achieved. A maximum penetration depth of ~150 m was achieved with a 15 cu. in. water gun operated at 140 bars. The multi-channel data allow the determination of an accurate velocity field for 3D processing, and they show particularly clean images of the fault zone and the overlying sediments in horizontal and vertical sections. In order to compare different sources, inline 55 was repeated with a 30/30 and a 15/15 cu. in. double-chamber air gun (Mini GI) operated at 100 and 80 bars, respectively. A maximum penetration depth of ~450 m was achieved with this source.
Resumo:
Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.
Resumo:
Introduction: The primary somatosensory cortex (SI) contains Brodmann areas (BA) 1, 2, 3a, and 3b. Research in non-human primates showed that BAs 3b, 1, and 2 each contain one full representation of the hand with separate representations for each finger. This research also showed that the finger representation in BA3b has larger and clearer finger somatotopy than BA1 and 2. Although several efforts to map finger somatotopy in SI by fMRI have been made at 1.5 and 3T these studies have yielded variable results and were not able to detect single subject finger somatotopy, probably due to the limited spatial extent of the cortical areas representing a digit (close to the resolution in most fMRI experiments), complications due to acquisition of consistent maps for individual subjects (Schweizer et al 2008), or inter-individual variability in sulcal anatomy impeding group studies. Here, we used 7T fMRI to investigate finger somatotopy in SI, some of its functional characteristics, and its reproducibility. Methods: Eight right-handed male subjects were scanned on a 7T scanner (Siemens Medical, Germany) with an 8-channel Tx/Rx rf-coil (Rapid Biomedical, Germany). 1.3x1.3x1.3mm3 resolution fMRI data were acquired using a sinusoidal readout EPI sequence (Speck et al, 2008) and FOV=210mm, TE/TR=27ms/2.5s, GRAPPA=2. Each volume contained 28 transverse slices covering SI. A single EPI volume with 64 slices was acquired to aid coregistration. 1x1x1mm3 anatomical data were acquire using the MP2RAGE sequence (Marques et al, 2009; TE/TR/TI1,2/TRmprage=2.63ms/7.2ms/0.9,3.2s/5s). Subjects were positioned supine in the scanner with their right arm comfortably against the magnet bore. An experimenter was positioned at the entrance of the bore where he could easily reach and stroke successively the two distal phalanxes of each digit. The order of stroked digit was D1 (thumb)-D3-D5-D2-D4, with 20s ON, 10s OFF alternated. This sequence was repeated four times per run and two functional runs were acquired per subject. Realignment, smoothing (FWHM 2 mm), coregistration of the anatomical to the fMRI data and calculation of t-statistics were done using SPM8. An SI mask was obtained via an F-contrast (p<0.001) over all digits. Within the mask, voxels were labeled with the number of the digit demonstrating the highest t-value for that particular voxel. Results: For all subjects, areas corresponding to the five digits were identified in contralateral SI. BA3b showed the most consistent somatotopic finger representation (see an example in Fig.1). The five digits were localized in a consecutive order in the cortex, with D1 most anterior, inferior and distal and D5, most posterior, superior and medial (mean distance between centres of mass of digit representations ±stderr: 4.2±0.7mm; see Fig. 2). The analysis of average beta values within each finger representation region revealed the specificity of the somatotopic region to the tactile input for each tested finger (except digit 4 and 5). Five of these subjects also presented an orderly and consecutive representation of the five digits in BA1 and 2. Conclusions: Our data reveal that the increased BOLD sensitivity at 7T and the high spatial resolution used in this study allow consistent somatotopic mapping using human touch as a stimulus and that human SI contains at least three separate regions that contain five separate representations of all single contralateral fingers. Moreover, adjacent fingers were represented at adjacent cortical regions across the three SI regions. The spatial organization of SI as reflected in individual subject topography corresponds well with previous electrophysiological data in non-human primates. The small distance between digit representations highlights the need for the high spatial resolution available at 7T.
Resumo:
Background and aim of the study: Genomic gains and losses play a crucial role in the development and progression of DLBCL and are closely related to gene expression profiles (GEP), including the germinal center B-cell like (GCB) and activated B-cell like (ABC) cell of origin (COO) molecular signatures. To identify new oncogenes or tumor suppressor genes (TSG) involved in DLBCL pathogenesis and to determine their prognostic values, an integrated analysis of high-resolution gene expression and copy number profiling was performed. Patients and methods: Two hundred and eight adult patients with de novo CD20+ DLBCL enrolled in the prospective multicentric randomized LNH-03 GELA trials (LNH03-1B, -2B, -3B, 39B, -5B, -6B, -7B) with available frozen tumour samples, centralized reviewing and adequate DNA/RNA quality were selected. 116 patients were treated by Rituximab(R)-CHOP/R-miniCHOP and 92 patients were treated by the high dose (R)-ACVBP regimen dedicated to patients younger than 60 years (y) in frontline. Tumour samples were simultaneously analysed by high resolution comparative genomic hybridization (CGH, Agilent, 144K) and gene expression arrays (Affymetrix, U133+2). Minimal common regions (MCR), as defined by segments that affect the same chromosomal region in different cases, were delineated. Gene expression and MCR data sets were merged using Gene expression and dosage integrator algorithm (GEDI, Lenz et al. PNAS 2008) to identify new potential driver genes. Results: A total of 1363 recurrent (defined by a penetrance > 5%) MCRs within the DLBCL data set, ranging in size from 386 bp, affecting a single gene, to more than 24 Mb were identified by CGH. Of these MCRs, 756 (55%) showed a significant association with gene expression: 396 (59%) gains, 354 (52%) single-copy deletions, and 6 (67%) homozygous deletions. By this integrated approach, in addition to previously reported genes (CDKN2A/2B, PTEN, DLEU2, TNFAIP3, B2M, CD58, TNFRSF14, FOXP1, REL...), several genes targeted by gene copy abnormalities with a dosage effect and potential physiopathological impact were identified, including genes with TSG activity involved in cell cycle (HACE1, CDKN2C) immune response (CD68, CD177, CD70, TNFSF9, IRAK2), DNA integrity (XRCC2, BRCA1, NCOR1, NF1, FHIT) or oncogenic functions (CD79b, PTPRT, MALT1, AUTS2, MCL1, PTTG1...) with distinct distribution according to COO signature. The CDKN2A/2B tumor suppressor locus (9p21) was deleted homozygously in 27% of cases and hemizygously in 9% of cases. Biallelic loss was observed in 49% of ABC DLBCL and in 10% of GCB DLBCL. This deletion was strongly correlated to age and associated to a limited number of additional genetic abnormalities including trisomy 3, 18 and short gains/losses of Chr. 1, 2, 19 regions (FDR < 0.01), allowing to identify genes that may have synergistic effects with CDKN2A/2B inactivation. With a median follow-up of 42.9 months, only CDKN2A/2B biallelic deletion strongly correlates (FDR p.value < 0.01) to a poor outcome in the entire cohort (4y PFS = 44% [32-61] respectively vs. 74% [66-82] for patients in germline configuration; 4y OS = 53% [39-72] vs 83% [76-90]). In a Cox proportional hazard prediction of the PFS, CDKN2A/2B deletion remains predictive (HR = 1.9 [1.1-3.2], p = 0.02) when combined with IPI (HR = 2.4 [1.4-4.1], p = 0.001) and GCB status (HR = 1.3 [0.8-2.3], p = 0.31). This difference remains predictive in the subgroup of patients treated by R-CHOP (4y PFS = 43% [29-63] vs. 66% [55-78], p=0.02), in patients treated by R-ACVBP (4y PFS = 49% [28-84] vs. 83% [74-92], p=0.003), and in GCB (4y PFS = 50% [27-93] vs. 81% [73-90], p=0.02), or ABC/unclassified (5y PFS = 42% [28-61] vs. 67% [55-82] p = 0.009) molecular subtypes (Figure 1). Conclusion: We report for the first time an integrated genetic analysis of a large cohort of DLBCL patients included in a prospective multicentric clinical trial program allowing identifying new potential driver genes with pathogenic impact. However CDKN2A/2B deletion constitutes the strongest and unique prognostic factor of chemoresistance to R-CHOP, regardless the COO signature, which is not overcome by a more intensified immunochemotherapy. Patients displaying this frequent genomic abnormality warrant new and dedicated therapeutic approaches.
Resumo:
Spatial resolution is a key parameter of all remote sensing satellites and platforms. The nominal spatial resolution of satellites is a well-known characteristic because it is directly related to the area in ground that represents a pixel in the detector. Nevertheless, in practice, the actual resolution of a specific image obtained from a satellite is difficult to know precisely because it depends on many other factors such as atmospheric conditions. However, if one has two or more images of the same region, it is possible to compare their relative resolutions. In this paper, a wavelet-decomposition-based method for the determination of the relative resolution between two remotely sensed images of the same area is proposed. The method can be applied to panchromatic, multispectral, and mixed (one panchromatic and one multispectral) images. As an example, the method was applied to compute the relative resolution between SPOT-3, Landsat-5, and Landsat-7 panchromatic and multispectral images taken under similar as well as under very different conditions. On the other hand, if the true absolute resolution of one of the images of the pair is known, the resolution of the other can be computed. Thus, in the last part of this paper, a spatial calibrator that is designed and constructed to help compute the absolute resolution of a single remotely sensed image is described, and an example of its use is presented.
Resumo:
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.
Resumo:
ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.
Resumo:
In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.
Resumo:
La2/3Ca1/3MnO3 (LCMO) films have been deposited on (110)-oriented SrTiO3 (STO) substrates. X-ray diffraction and high-resolution electron microscopy reveal that the (110) LCMO films are epitaxial and anisotropically in-plane strained, with higher relaxation along the [1¿10] direction than along the [001] direction; x-ray absorption spectroscopy data signaled the existence of a single intermediate Mn3+/4+ 3d-state at the film surface. Their magnetic properties are compared to those of (001) LCMO films grown simultaneously on (001) STO substrates It is found that (110) LCMO films present a higher Curie temperature (TC) and a weaker decay of magnetization when approaching TC than their (001) LCMO counterparts. These improved films have been subsequently covered by nanometric STO layers. Conducting atomic-force experiments have shown that STO layers, as thin as 0.8 nm, grown on top of the (110) LCMO electrode, display good insulating properties. We will show that the electric conductance across (110) STO layers, exponentially depending on the barrier thickness, is tunnel-like. The barrier height in STO (110) is found to be similar to that of STO (001). These results show that the (110) LCMO electrodes can be better electrodes than (001) LCMO for magnetic tunnel junctions, and that (110) STO are suitable insulating barriers.
Resumo:
An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.
Resumo:
Neural comparisons of bilateral sensory inputs are essential for visual depth perception and accurate localization of sounds in space. All animals, from single-cell prokaryotes to humans, orient themselves in response to environmental chemical stimuli, but the contribution of spatial integration of neural activity in olfaction remains unclear. We investigated this problem in Drosophila melanogaster larvae. Using high-resolution behavioral analysis, we studied the chemotaxis behavior of larvae with a single functional olfactory neuron on either the left or right side of the head, allowing us to examine unilateral or bilateral olfactory input. We developed new spectroscopic methods to create stable odorant gradients in which odor concentrations were experimentally measured. In these controlled environments, we observed that a single functional neuron provided sufficient information to permit larval chemotaxis. We found additional evidence that the overall accuracy of navigation is enhanced by the increase in the signal-to-noise ratio conferred by bilateral sensory input.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
The basic photosynthetic unit containing the reaction centre and the light-harvesting I complex (RC-LHI) of the purple non-sulphur bacterium Rhodospirillum rubrum was purified and reconstituted into two-dimensional (2D) membrane crystals. Transmission electron microscopy using conventional techniques and cryoelectron microscopy of the purified single particles and of 2D crystals yielded a projection of the RC-LHI complex at a resolution of at least 1.6 nm. In this projection the LHI ring appears to have a square symmetry and packs in a square crystal lattice. The square geometry of the LHI ring was observed also in images of single isolated particles of the RC-LHI complex. However, although the LHI units are packed identically within the crystal lattice, a new rotational analysis developed here showed that the reaction centres take up one of four possible orientations within the ring. This fourfold disorder supports our interpretation of a square ring symmetry and suggests that a hitherto undetected component may be present within the photosynthetic unit.
Resumo:
A mathematical model that describes the behavior of low-resolution Fresnel lenses encoded in any low-resolution device (e.g., a spatial light modulator) is developed. The effects of low-resolution codification, such the appearance of new secondary lenses, are studied for a general case. General expressions for the phase of these lenses are developed, showing that each lens behaves as if it were encoded through all pixels of the low-resolution device. Simple expressions for the light distribution in the focal plane and its dependence on the encoded focal length are developed and commented on in detail. For a given codification device an optimum focal length is found for best lens performance. An optimization method for codification of a single lens with a short focal length is proposed.
Resumo:
Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.