1000 resultados para Significative learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expectations about the future are central for determination of current macroeconomic outcomes and the formulation of monetary policy. Recent literature has explored ways for supplementing the benchmark of rational expectations with explicit models of expectations formation that rely on econometric learning. Some apparently natural policy rules turn out to imply expectational instability of private agents’ learning. We use the standard New Keynesian model to illustrate this problem and survey the key results about interest-rate rules that deliver both uniqueness and stability of equilibrium under econometric learning. We then consider some practical concerns such as measurement errors in private expectations, observability of variables and learning of structural parameters required for policy. We also discuss some recent applications including policy design under perpetual learning, estimated models with learning, recurrent hyperinflations, and macroeconomic policy to combat liquidity traps and deflation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experiments designed to test between Nash equilibria that are stable and unstable under learning. The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction about what happens when there is divergence from equilibrium under fictitious play like learning processes. We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is stable and one is unstable under learning. Both games are versions of Rock-Paper-Scissors with the addition of a fourth strategy, Dumb. Nash equilibrium places a weight of 1/2 on Dumb in both games, but the TASP places no weight on Dumb when the equilibrium is unstable. We also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We find that the high payoff unstable treatment differs from the others. Frequency of Dumb is lower and play is further from Nash than in the other treatments. That is, we find support for the comparative statics prediction of learning theory, although the frequency of Dumb is substantially greater than zero in the unstable treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates that an asset pricing model with least-squares learning can lead to bubbles and crashes as endogenous responses to the fundamentals driving asset prices. When agents are risk-averse they need to make forecasts of the conditional variance of a stock’s return. Recursive updating of both the conditional variance and the expected return implies several mechanisms through which learning impacts stock prices. Extended periods of excess volatility, bubbles and crashes arise with a frequency that depends on the extent to which past data is discounted. A central role is played by changes over time in agents’ estimates of risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-formal education programmes are active in a number of developing countries. These programmes offer vulnerable students an opportunity to pursue their education although they were excluded for various reasons from the formal education systems. This paper examines the impact of two programmes (one in Mauritius, and one in Thailand) on their participants’ aspirations towards learning. We develop a methodology to measure the perception of students regarding their learning experience. More than a third of them, for example, believe that there is no barrier to their education. Most acknowledge the role of their teachers in raising their aspirations towards their educational achievement. When compared to male students, female students seem to value more the role of their education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These notes try to clarify some discussions on the formulation of individual intertemporal behavior under adaptive learning in representative agent models. First, we discuss two suggested approaches and related issues in the context of a simple consumption-saving model. Second, we show that the analysis of learning in the NewKeynesian monetary policy model based on “Euler equations” provides a consistent and valid approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, I look at the interaction between social learning and cooperative behavior. I model this using a social dilemma game with publicly observed sequential actions and asymmetric information about pay offs. I find that some informed agents in this model act, individually and without collusion, to conceal the privately optimal action. Because the privately optimal action is socially costly the behavior of informed agents can lead to a Pareto improvement in a social dilemma. In my model I show that it is possible to get cooperative behavior if information is restricted to a small but non-zero proportion of the population. Moreover, such cooperative behavior occurs in a finite setting where it is public knowledge which agent will act last. The proportion of cooperative agents within the population can be made arbitrarily close to 1 by increasing the finite number of agents playing the game. Finally, I show that under a broad set of conditions that it is a Pareto improvement on a corner value, in the ex-ante welfare sense, for an interior proportion of the population to be informed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the standard real business cycle model with lump-sum taxes, we analyze the impact of fiscal policy when agents form expectations using adaptive learning rather than rational expectations (RE). The output multipliers for government purchases are significantly higher under learning, and fall within empirical bounds reported in the literature (in sharp contrast to the implausibly low values under RE). Effectiveness of fiscal policy is demonstrated during times of economic stress like the recent Great Recession. Finally it is shown how learning can lead to dynamics empirically documented during episodes of 'fiscal consolidations.'

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agents have two forecasting models, one consistent with the unique rational expectations equilibrium, another that assumes a time-varying parameter structure. When agents use Bayesian updating to choose between models in a self-referential system, we find that learning dynamics lead to selection of one of the two models. However, there are parameter regions for which the non-rational forecasting model is selected in the long-run. A key structural parameter governing outcomes measures the degree of expectations feedback in Muth's model of price determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the impact of anticipated fiscal policy changes in a Ramsey economy where agents form long-horizon expectations using adaptive learning. We extend the existing framework by introducing distortionary taxes as well as elastic labour supply, which makes agents. decisions non-predetermined but more realistic. We detect that the dynamic responses to anticipated tax changes under learning have oscillatory behaviour that can be interpreted as self-fulfilling waves of optimism and pessimism emerging from systematic forecast errors. Moreover, we demonstrate that these waves can have important implications for the welfare consequences of .scal reforms. (JEL: E32, E62, D84)