789 resultados para Service delivery platform
Resumo:
We present the development of a multifunctional platform equipped with an array of silicon nitride micropipettes with dimensions allowing the implementation of extra- and intracellular operations. Micropipettes with outer diameter that ranges from 6 mum down to 300 nm and with walls thicknesses of 500 down to 150 nm are presented. The generic technology developed to fabricate these micropipettes has a number of advantages, including the ability to be implemented as ion-selective electrodes for (A) intracellular and (B) extracellular recordings and as (C) local drug microdispensers.
Resumo:
In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.
Resumo:
The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission. MCN project was launched in November 2012 for the period of 36 month. In total top-tier 19 partners from industry and academia commit to jointly establish the vision of Mobile Cloud Networking, to develop a fully cloud-based mobile communication and application platform.
Resumo:
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described.
Resumo:
The Mobile Cloud Networking project develops among others, several virtualized services and applications, in particular: (1) IP Multimedia Subsystem as a Service that gives the possibility to deploy a virtualized and on-demand instance of the IP Multimedia Subsystem platform, (2) Digital Signage Service as a Service that is based on a re-designed Digital Signage Service architecture, adopting the cloud computing principles, and (3) Information Centric Networking/Content Delivery Network as a Service that is used for distributing, caching and migrating content from other services. Possible designs for these virtualized services and applications have been identified and are being implemented. In particular, the architectures of the mentioned services were specified, adopting cloud computing principles, such as infrastructure sharing, elasticity, on-demand and pay-as-you-go. The benefits of Reactive Programming paradigm are presented in the context of Interactive Cloudified Digital Signage services in a Mobile Cloud Platform, as well as the benefit of interworking between different Mobile Cloud Networking Services as Digital Signage Service and Content Delivery Network Service for better performance of Video on Demand content deliver. Finally, the management of Service Level Agreements and the support of rating, charging and billing has also been considered and defined.
Resumo:
Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers (e.g., MNO, MVNO) move from proprietary and bespoke hardware and software platforms toward an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently created through cloudification by leveraging the existing infrastructure. In this work, we present RANaaS, which is a cloudified radio access network delivered as a service. RANaaS provides the service life-cycle of an ondemand, elastic, and pay as you go 3GPP RAN instantiated on top of the cloud infrastructure. We demonstrate an example of realtime cloudified LTE network deployment using the OpenAirInterface LTE implementation and OpenStack running on commodity hardware as well as the flexibility and performance of the platform developed.
Resumo:
Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.
Resumo:
Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
Similarities and differences in management activities and patient health outcomes between a traditional physician staffed labor and delivery setting and a certified nurse-midwife staffed Birth Center within the same hospital were described. The 950 study subjects, low income, minority women, were classified as low obstetrical risk by a POPRAS score of 25 points or less at time of admission for labor and delivery. The study subjects were similar in demographic, antepartum and intrapartum characteristics; the labor course was problem free for the majority in both settings. There were no remarkable differences in health outcomes between the groups. Management activities varied between settings; these variations were policy related rather than health related. The POPRAS rating system was an accurate predictor for 93% of BC subjects and 85% of LDU subjects. Charge for service was approximately $600 less for BC women; length of stay did not contribute to the difference in charge. Overall, BC respondents to the attitude survey were more satisfied with their labor and delivery experience than L\&DU women. ^
Resumo:
The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.
Resumo:
Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.
Resumo:
Providing experimental facilities for the Internet of Things (IoT) world is of paramount importance to materialise the Future Internet (FI) vision. The level of maturity achieved at the networking level in Sensor and Actuator networks (SAN) justifies the increasing demand on the research community to shift IoT testbed facilities from the network to the service and information management areas. In this paper we present an Experimental Platform fulfilling these needs by: integrating heterogeneous SAN infrastructures in a homogeneous way; providing mechanisms to handle information, and facilitating the development of experimental services. It has already been used to deploy applications in three different field trials: smart metering, smart places and environmental monitoring and it will be one of the components over which the SmartSantander project, that targets a large-scale IoT experimental facility, will rely on
Resumo:
Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.
Resumo:
Future high-quality consumer electronics will contain a number of applications running in a highly dynamic environment, and their execution will need to be efficiently arbitrated by the underlying platform software. The multimedia applications that currently execute in such similar contexts face frequent run-time variations in their resource demands, originated by the greedy nature of the multimedia processing itself. Changes in resource demands are triggered by numerous reasons (e.g. a switch in the input media compression format). Such situations require real-time adaptation mechanisms to adjust the system operation to the new requirements, and this must be done seamlessly to satisfy the user experience. One solution for efficiently managing application execution is to apply quality of service resource management techniques, based on assigning and enforcing resource contracts to applications. Most resource management solutions provide temporal isolation by enforcing resource assignments and avoiding any resource overruns. However, this has a clear limitation over the cost-effective resource usage. This paper presents a simple priority assignment scheme based on uniform priority bands to allow that greedy multimedia tasks incur in safe overruns that increase resource usage and do not threaten the timely execution of non-overrunning tasks. Experimental results show that the proposed priority assignment scheme in combination with a resource accounting mechanism preserves timely multimedia execution and delivery, achieves a higher cost-effective processor usage, and guarantees the execution isolation of non-overrunning tasks.