897 resultados para Service Oriented Computing
Resumo:
Over the past two decades, the community college in the United States has boasted a leadership role in the movement to make education community-based and performance-oriented. This has led to an intensification in attempts to search for more innovative means to make education more experiential and relevant to students' lived experiences. One such innovative program that holds promise to meet this challenge is service- learning. This paradigm attempts to relate the academic education in the classroom to community-based problems, which fits in neatly with the community-based characteristics of the community college. It promises to link ideas developed in the classroom and their practical application within the community through guided reflection. It is designed to enhance and enrich student learning of course material by combining citizenship, academic subjects, skills, and values. Though many studies have been carried out in regard to the outcomes of service-learning through quantitative means, relatively few qualitative studies are available, and those available have primarily studied traditional students at four-year residential colleges or universities. Therefore, there is an urgent need to study non-traditional students' perspectives at the community college level. The purpose of this study was to describe and explain the perspectives of five students at Broward Community College, Central Campus, Ft. Lauderdale, Florida. The following exploratory questions guided this study: 1. What elements constitute these students' perspectives? 2. What variables influence their perspectives? 3. What beliefs do these students hold about their service-learning experience which support or are contrary to their perspectives? This ethnographic interview study was conducted over a period of twelve months and consisted of three interviews for each of the five participants. The analysis of the data was conducted following the stringent principles of ethnographic research which included constant comparative analysis. The interviews were tape recorded with the participants' permission, transcribed verbatim, and organized into categories for in-depth understanding. Furthermore, these categories were developed from the data collected and an organizational scheme for understanding and interpreting of these perspectives emerged. The researcher, as well, kept a reflective journal of the research process as part of the data set. The results of this study show the need for a better grasp of the concepts of service-learning on the part of all involved with its implementation. In spite of this, all of the participants displayed gains to a greater or lesser degree in personal growth, academic skills, and citizenship skills.
Resumo:
Multi-Cloud Applications are composed of services offered by multiple cloud platforms where the user/developer has full knowledge of the use of such platforms. The use of multiple cloud platforms avoids the following problems: (i) vendor lock-in, which is dependency on the application of a certain cloud platform, which is prejudicial in the case of degradation or failure of platform services, or even price increasing on service usage; (ii) degradation or failure of the application due to fluctuations in quality of service (QoS) provided by some cloud platform, or even due to a failure of any service. In multi-cloud scenario is possible to change a service in failure or with QoS problems for an equivalent of another cloud platform. So that an application can adopt the perspective multi-cloud is necessary to create mechanisms that are able to select which cloud services/platforms should be used in accordance with the requirements determined by the programmer/user. In this context, the major challenges in terms of development of such applications include questions such as: (i) the choice of which underlying services and cloud computing platforms should be used based on the defined user requirements in terms of functionality and quality (ii) the need to continually monitor the dynamic information (such as response time, availability, price, availability), related to cloud services, in addition to the wide variety of services, and (iii) the need to adapt the application if QoS violations affect user defined requirements. This PhD thesis proposes an approach for dynamic adaptation of multi-cloud applications to be applied when a service is unavailable or when the requirements set by the user/developer point out that other available multi-cloud configuration meets more efficiently. Thus, this work proposes a strategy composed of two phases. The first phase consists of the application modeling, exploring the similarities representation capacity and variability proposals in the context of the paradigm of Software Product Lines (SPL). In this phase it is used an extended feature model to specify the cloud service configuration to be used by the application (similarities) and the different possible providers for each service (variability). Furthermore, the non-functional requirements associated with cloud services are specified by properties in this model by describing dynamic information about these services. The second phase consists of an autonomic process based on MAPE-K control loop, which is responsible for selecting, optimally, a multicloud configuration that meets the established requirements, and perform the adaptation. The adaptation strategy proposed is independent of the used programming technique for performing the adaptation. In this work we implement the adaptation strategy using various programming techniques such as aspect-oriented programming, context-oriented programming and components and services oriented programming. Based on the proposed steps, we tried to assess the following: (i) the process of modeling and the specification of non-functional requirements can ensure effective monitoring of user satisfaction; (ii) if the optimal selection process presents significant gains compared to sequential approach; and (iii) which techniques have the best trade-off when compared efforts to development/modularity and performance.
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Postprint
Resumo:
This dissertation studies the context-aware application with its proposed algorithms at client side. The required context-aware infrastructure is discussed in depth to illustrate that such an infrastructure collects the mobile user’s context information, registers service providers, derives mobile user’s current context, distributes user context among context-aware applications, and provides tailored services. The approach proposed tries to strike a balance between the context server and mobile devices. The context acquisition is centralized at the server to ensure the usability of context information among mobile devices, while context reasoning remains at the application level. Hence, a centralized context acquisition and distributed context reasoning are viewed as a better solution overall. The context-aware search application is designed and implemented at the server side. A new algorithm is proposed to take into consideration the user context profiles. By promoting feedback on the dynamics of the system, any prior user selection is now saved for further analysis such that it may contribute to help the results of a subsequent search. On the basis of these developments at the server side, various solutions are consequently provided at the client side. A proxy software-based component is set up for the purpose of data collection. This research endorses the belief that the proxy at the client side should contain the context reasoning component. Implementation of such a component provides credence to this belief in that the context applications are able to derive the user context profiles. Furthermore, a context cache scheme is implemented to manage the cache on the client device in order to minimize processing requirements and other resources (bandwidth, CPU cycle, power). Java and MySQL platforms are used to implement the proposed architecture and to test scenarios derived from user’s daily activities. To meet the practical demands required of a testing environment without the impositions of a heavy cost for establishing such a comprehensive infrastructure, a software simulation using a free Yahoo search API is provided as a means to evaluate the effectiveness of the design approach in a most realistic way. The integration of Yahoo search engine into the context-aware architecture design proves how context aware application can meet user demands for tailored services and products in and around the user’s environment. The test results show that the overall design is highly effective,providing new features and enriching the mobile user’s experience through a broad scope of potential applications.
Resumo:
Many cloud-based applications employ a data centre as a central server to process data that is generated by edge devices, such as smartphones, tablets and wearables. This model places ever increasing demands on communication and computational infrastructure with inevitable adverse effect on Quality-of-Service and Experience. The concept of Edge Computing is predicated on moving some of this computational load towards the edge of the network to harness computational capabilities that are currently untapped in edge nodes, such as base stations, routers and switches. This position paper considers the challenges and opportunities that arise out of this new direction in the computing landscape.
Resumo:
Development of Internet-of-Services will be hampered by heterogeneous Internet-of-Things infrastructures, such as inconsistency in communicating with participating objects, connectivity between them, topology definition & data transfer, access via cloud computing for data storage etc. Our proposed solutions are applicable to a random topology scenario that allow establishing of multi-operational sensor networks out of single networks and/or single service networks with the participation of multiple networks; thus allowing virtual links to be created and resources to be shared. The designed layers are context-aware, application-oriented, and capable of representing physical objects to a management system, along with discovery of services. The reliability issue is addressed by deploying IETF supported IEEE 802.15.4 network model for low-rate wireless personal networks. Flow- sensor succeeded better results in comparison to the typical - sensor from reachability, throughput, energy consumption and diversity gain viewpoint and through allowing the multicast groups into maximum number, performances can be improved.
Resumo:
Individuals and corporate users are persistently considering cloud adoption due to its significant benefits compared to traditional computing environments. The data and applications in the cloud are stored in an environment that is separated, managed and maintained externally to the organisation. Therefore, it is essential for cloud providers to demonstrate and implement adequate security practices to protect the data and processes put under their stewardship. Security transparency in the cloud is likely to become the core theme that underpins the systematic disclosure of security designs and practices that enhance customer confidence in using cloud service and deployment models. In this paper, we present a framework that enables a detailed analysis of security transparency for cloud based systems. In particular, we consider security transparency from three different levels of abstraction, i.e., conceptual, organisation and technical levels, and identify the relevant concepts within these levels. This allows us to provide an elaboration of the essential concepts at the core of transparency and analyse the means for implementing them from a technical perspective. Finally, an example from a real world migration context is given to provide a solid discussion on the applicability of the proposed framework.
Resumo:
We present Dithen, a novel computation-as-a-service (CaaS) cloud platform specifically tailored to the parallel ex-ecution of large-scale multimedia tasks. Dithen handles the upload/download of both multimedia data and executable items, the assignment of compute units to multimedia workloads, and the reactive control of the available compute units to minimize the cloud infrastructure cost under deadline-abiding execution. Dithen combines three key properties: (i) the reactive assignment of individual multimedia tasks to available computing units according to availability and predetermined time-to-completion constraints; (ii) optimal resource estimation based on Kalman-filter estimates; (iii) the use of additive increase multiplicative decrease (AIMD) algorithms (famous for being the resource management in the transport control protocol) for the control of the number of units servicing workloads. The deployment of Dithen over Amazon EC2 spot instances is shown to be capable of processing more than 80,000 video transcoding, face detection and image processing tasks (equivalent to the processing of more than 116 GB of compressed data) for less than $1 in billing cost from EC2. Moreover, the proposed AIMD-based control mechanism, in conjunction with the Kalman estimates, is shown to provide for more than 27% reduction in EC2 spot instance cost against methods based on reactive resource estimation. Finally, Dithen is shown to offer a 38% to 500% reduction of the billing cost against the current state-of-the-art in CaaS platforms on Amazon EC2 (Amazon Lambda and Amazon Autoscale). A baseline version of Dithen is currently available at dithen.com.
Resumo:
Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.
Resumo:
This article will address the main technical aspects that facilitate the use and growth of computer technology in the cloud, which go hand in hand with the emergence of more and better services on the Internet and technological development of the broadband. Finally, we know what is the impact that the cloud computing technologies in the automation of information units.
Resumo:
Queueing systems constitute a central tool in modeling and performance analysis. These types of systems are in our everyday life activities, and the theory of queueing systems was developed to provide models for forecasting behaviors of systems subject to random demand. The practical and useful applications of the discrete-time queues make the researchers to con- tinue making an e ort in analyzing this type of models. Thus the present contribution relates to a discrete-time Geo/G/1 queue in which some messages may need a second service time in addition to the rst essential service. In day-to-day life, there are numerous examples of queueing situations in general, for example, in manufacturing processes, telecommunication, home automation, etc, but in this paper a particular application is the use of video surveil- lance with intrusion recognition where all the arriving messages require the main service and only some may require the subsidiary service provided by the server with di erent types of strategies. We carry out a thorough study of the model, deriving analytical results for the stationary distribution. The generating functions of the number of messages in the queue and in the system are obtained. The generating functions of the busy period as well as the sojourn times of a message in the server, the queue and the system are also provided.
Resumo:
Purpose – The purpose of this empirical paper is to investigate internal marketing from a behavioural perspective. The impact of internal marketing behaviours, operationalised as an internal market orientation (IMO), on employees' marketing and other in/role behaviours (IRB) were examined. Design/methodology/approach – Survey data measuring IMO, market orientation and a range of constructs relevant to the nomological network in which they are embedded were collected from the UK retail managers. These were tested to establish their psychometric properties and the conceptual model was analysed using structural equations modelling, employing a partial least squares methodology. Findings – IMO has positive consequences for employees' market/oriented and other IRB. These, in turn, influence marketing success. Research limitations/implications – The paper provides empirical support for the long/held assumption that internal and external marketing are related and that organisations should balance their external focus with some attention to employees. Future research could measure the attitudes and behaviours of managers, employees and customers directly and explore the relationships between them. Practical implications – Firm must ensure that they do not put the needs of their employees second to those of managers and shareholders; managers must develop their listening skills and organisations must become more responsive to the needs of their employees. Originality/value – The paper contributes to the scarce body of empirical support for the role of internal marketing in services organisations. For researchers, this paper legitimises the study of internal marketing as a route to external market success; for managers, the study provides quantifiable evidence that focusing on employees' wants and needs impacts their behaviours towards the market. © 2010, Emerald Group Publishing Limited
Resumo:
Code patterns, including programming patterns and design patterns, are good references for programming language feature improvement and software re-engineering. However, to our knowledge, no existing research has attempted to detect code patterns based on code clone detection technology. In this study, we build upon the previous work and propose to detect and analyze code patterns from a collection of open source projects using NiPAT technology. Because design patterns are most closely associated with object-oriented languages, we choose Java and Python projects to conduct our study. The tool we use for detecting patterns is NiPAT, a pattern detecting tool originally developed for the TXL programming language based on the NiCad clone detector. We extend NiPAT for the Java and Python programming languages. Then, we try to identify all the patterns from the pattern report and classify them into several different categories. In the end of the study, we analyze all the patterns and compare the differences between Java and Python patterns.