603 resultados para Serotonin
Resumo:
BACKGROUND: Ondansetron, a serotonin-3 receptor antagonist, reduces postoperative shivering. Drugs that reduce shivering usually impair central thermoregulatory control, and may thus be useful for preventing shivering during induction of therapeutic hypothermia. We determined, therefore, whether ondansetron reduces the major autonomic thermoregulatory response thresholds (triggering core temperatures) in humans. METHODS: Control (placebo) and ondansetron infusions at the target plasma concentration of 250 ng ml(-1) were studied in healthy volunteers on two different days. Each day, skin and core temperatures were increased to provoke sweating; then reduced to elicit peripheral vasoconstriction and shivering. We determined the core-temperature sweating, vasoconstriction and shivering thresholds after compensating for changes in mean-skin temperature. Data were analysed using t-tests and presented as means (sds); P<0.05 was taken as significant. RESULTS: Ondensetron plasma concentrations were 278 (57), 234 (55) and 243 (58) ng ml(-1) at the sweating, vasoconstriction and shivering thresholds, respectively; these corresponded to approximately 50 mg of ondansetron which is approximately 10 times the dose used for postoperative nausea and vomiting. Ondansetron did not change the sweating (control 37.4 (0.4) degrees C, ondansetron 37.6 (0.3) degrees C, P=0.16), vasoconstriction (37.0 (0.5) degrees C vs 37.1 (0.3) degrees C; P=0.70), or shivering threshold (36.3 (0.5) degrees C vs 36.3 (0.6) degrees C; P=0.76). No sedation was observed on either study day. CONCLUSIONS: /b>. Ondansetron appears to have little potential for facilitating induction of therapeutic hypothermia.
Resumo:
Collagen- and thrombin-activated (COAT) platelets were first described in 2000 and have attracted considerable interest, changing the interpretation of the way in which platelets contribute to thrombin generation and how their procoagulant activity is organized. Platelets activated by two agonists coming from glycoprotein VI or Fc gamma-receptor IIA agonists on the one hand and thrombin on the other produce a population of approximately 50% highly procoagulant active platelets. This subgroup is formed by tissue transglutaminase and factor XIIIa linking of serotonin to the procoagulant proteins from granules or plasma, and these serotonylated proteins bind to fibrinogen or thrombospondin on the platelet surface. Serotonylation in the platelet cytoplasm has recently been shown to be an important regulating mechanism governing the activation of small GTPases and their function in granule release. Recent studies with Tph-/- mice in which the peripheral serotonin, including that in platelets, is very strongly reduced, have shown a prolonged bleeding time, suggesting it has an important hemostatic role in the release of platelet von Willebrand factor. More knowledge about how COAT platelets are formed will be important for a better understanding of the physiology and pathology of hemostasis.
Resumo:
INTRODUCTION: In highly emetogenic chemotherapy, the recommended dose of the serotonin-receptor antagonist ondansetron (5 mg/m(2) q8h) may be insufficient to prevent chemotherapy-induced nausea and vomiting. In adults, ondansetron-loading doses (OLD) of 32 mg are safe. We aimed to evaluate in children the safety of an OLD of 16 mg/m(2) (top, 24 mg) i.v., followed by two doses of 5 mg/m(2) q8h. MATERIALS AND METHODS: This retrospective single-center study included all pediatric oncology patients having received >/=1 OLD between 2002 and 2005. Adverse events (AE) definitely, probably, or possibly related to OLD were studied, excluding AE not or unlikely related to the OLD. Associations between potential predictors and at least moderate AE were analyzed by mixed logistic regression. RESULTS: Of 167 patients treated with chemotherapy, 37 (22%) received 543 OLD. The most common AE were hypotension, fatigue, injection site reaction, headache, hot flashes/flushes, and dizziness. At least mild AE were described in 139 OLD (26%), at least moderate AE in 23 (4.2%), and severe AE in 5 (0.9%; exact 95% confidence interval [CI], 0.4-2.1). Life-threatening or lethal AE were not observed (0.0%; 0.0-0.6). At least moderate AE were significantly more frequent in female patients (odds ratio [OR] 3.5; 95% CI 1.4-8.8; p = 0.010), after erroneously given second OLD (17.0; 1.9-154; p = 0.012) and higher 24 h cumulative surface corrected dose (1.26 per mg/m(2); 1.06-1.51; p = 0.009). OLD given to infants below 2 years were not associated with more frequent AE. CONCLUSIONS: Ondansetron-loading doses of 16 mg/m(2) (top, 24 mg) i.v. seem to be safe in infants, children, and adolescents.
Resumo:
Even though depressions and depressive symptoms are frequently observed in patients with medical diseases, their psychological problems are often neither diagnosed nor treated. Diagnosis of mood state might be easy in isolated cases yet it often is not since the precise nature of normal mood cannot be expressed in quantitative terms. Furthermore, depression can only be diagnosed based on the doctor's clinical appraisal and the patient's own description of his/her complaints. There is no gold standard on which depressive symptoms can be based on--and further on, depression is not a diagnosis. Instead, it is a syndrome that calls for differential diagnoses before treatment can be offered. Diagnosing depressive comorbidity in patients with medical complaints is even more difficult because of the overlap between symptoms of depression and accompanying symptoms of the somatic illness e.g. lack of energy. Although depressive states have been known to be a risk factor for the prognosis of patients with coronary heart disease for a long time, there is a paucity of research about the therapy these patients undergo due to the fact that tricyclic anti-depressants can have cardiotoxic effects on patients with heart disease. The treatment of depression in these patients has become a much lower risk since the introduction of serotonin reuptake inhibitors. There is widespread evidence that depressive comorbidity has a negative impact on the prognosis of medical disorders. Despite the complex nature of diagnosing depression, proper diagnosis and treatment is increasingly important in internal medicine and especially cardiology.
Resumo:
BACKGROUND: Novel antidepressant drugs are increasingly used by women of child bearing age. However, potentially harmful effects on fetus and newborn remain unknown. METHODS: Case report and literature review. RESULTS: We present preterm twins whose mother was treated with venlafaxine, a nonselective serotonin reuptake inhibitor, throughout pregnancy until delivery. The twins developed neonatal necrotizing enterocolitis. CONCLUSION: The question whether there might be a correlation between maternal serotonin reuptake inhibitor therapy and neonatal necrotizing enterocolitis is discussed.
Resumo:
Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.
Resumo:
Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.
Resumo:
Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.
Resumo:
BACKGROUND AND AIMS: Well-differentiated neuro-endocrine ileal carcinoids are composed of serotonin-producing enterochromaffin (EC) cells. Life expectancy is determined by metastatic spread to the liver because medical treatment options are still very limited. Selective inhibition of angiogenesis or lymphangiogenesis might prevent tumour growth and metastatic spread. We examined the role of the vascular endothelial growth factors (VEGFs) A, B, C, D, and their receptors (VEGFRs) 1, 2, 3 in angiogenesis and lymphangiogenesis of ileal EC cell carcinoids with and without liver metastases. METHODS: The expression of various VEGFs and VEGFRs was determined by quantitative real-time RT-PCR in healthy mucosa, primary tumour, lymph node metastases and liver metastases of 25 patients with ileal EC cell carcinoids. Microvessel density (MVD) was determined by CD-31 staining in primary tumours and lymphatic vessel density (LVD) by LYVE-1 staining. VEGF expression levels, MVD, LVD, and patients' survival time were correlated using logistic regression and Kaplan-Meier survival analysis. RESULTS: VEGF-A was highly expressed with no difference between normal mucosa and tumours. VEGF-B and -D as well as VEGFR-1 and -2 expression levels were significantly increased in the tumours when compared to normal mucosa. Patients with liver metastasis, however, had a significantly lower expression of the factors A, B, and C and the receptors 2 and 3. MVD in primary tumours positively correlated with the expression of VEGF ligands and their receptors, except for VEGF-D. LVD did not correlate with any VEGF ligand or receptor. Interestingly, low expression levels of VEGF-B were associated with poor survival. CONCLUSION: Patients with more aggressive metastatic spreading had relatively decreased expression levels of VEGF ligands and receptors. Thus, anti-angiogenic therapy may not be a suitable target in metastatic ileal EC cell carcinoids.
Resumo:
OBJECTIVES To synthesise the available evidence on pharmacological and non-pharmacological interventions recommended for fibromyalgia syndrome (FMS). METHODS Electronic databases including MEDLINE, PsycINFO, Scopus, the Cochrane Controlled Trials Registry and the Cochrane Library were searched for randomised controlled trials comparing any therapeutic approach as recommended in FMS guidelines (except complementary and alternative medicine) with control interventions in patients with FMS. Primary outcomes were pain and quality of life. Data extraction was done using standardised forms. RESULTS 102 trials in 14 982 patients and eight active interventions (tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin noradrenaline reuptake inhibitors (SNRIs), the gamma-amino butyric acid analogue pregabalin, aerobic exercise, balneotherapy, cognitive behavioural therapy (CBT), multicomponent therapy) were included. Most of the trials were small and hampered by methodological quality, introducing heterogeneity and inconsistency in the network. When restricted to large trials with ≥100 patients per group, heterogeneity was low and benefits for SNRIs and pregabalin compared with placebo were statistically significant, but small and not clinically relevant. For non-pharmacological interventions, only one large trial of CBT was available. In medium-sized trials with ≥50 patients per group, multicomponent therapy showed small to moderate benefits over placebo, followed by aerobic exercise and CBT. CONCLUSIONS Benefits of pharmacological treatments in FMS are of questionable clinical relevance and evidence for benefits of non-pharmacological interventions is limited. A combination of pregabalin or SNRIs as pharmacological interventions and multicomponent therapy, aerobic exercise and CBT as non-pharmacological interventions seems most promising for the management of FMS.
Resumo:
We developed a novel delay discounting task to investigate outcome impulsivity in pigs. As impulsivity can affect aggression, and might also relate to proactive and reactive coping styles, eight proactive (HR) and eight reactive (LR) pigs identified in a manual restraint test ("Backtest", after Bolhuis et al., 2003) were weaned and mixed in four pens of four unfamiliar pigs, so that each pen had two HR and two LR pigs, and aggression was scored in the 9h after mixing. In the delay discounting task, each pig chose between two levers, one always delivering a small immediate reward, the other a large delayed reward with daily increasing delays, impulsive individuals being the ones discounting the value of the large reward quicker. Two novel strategies emerged: some pigs gradually switched their preference towards the small reward ('Switchers') as predicted, but others persistently preferred the large reward until they stopped making choices ('Omitters'). Outcome impulsivity itself was unrelated to these strategies, to urinary serotonin metabolite (5-HIAA) or dopamine metabolite (HVA) levels, aggression at weaning, or coping style. However, HVA was relatively higher in Omitters than Switchers, and positively correlated with behavioural measures of indecisiveness and frustration during choosing. The delay discounting task thus revealed two response strategies that seemed to be related to the activity of the dopamine system and might indicate a difference in execution, rather than outcome, impulsivity.
Resumo:
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.
Resumo:
Present models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of new synapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia. As a first step in addressing this issue, we used confocal microscopy to examine sites of contact between sensory and motor neurons in naive animals. Our results revealed relatively few contacts between physiologically connected cells. In addition, the number of contact sites was proportional to the amplitude of the EPSP elicited in the follower motor neuron by direct stimulation of the sensory neuron. This is the first time such a correlation has been observed in the central nervous system. Serotonin is the neurotransmitter most closely examined for its role in modulating synaptic strength at the sensorimotor synapse. However, the structural relationship of serotonergic processes and sensorimotor synapses has never been examined. Surprisingly, serotonergic processes usually made contact with sensory and motor neurons at sites located relatively distant from the sensorimotor synapse. This result implies that heterosynaptic regulation is due to nondirected release of serotonin into the neuropil.
Resumo:
Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.
Resumo:
Abnormal yawning is an underappreciated phenomenon in patients with ischemic stroke. We aimed at identifying frequently affected core regions in the supratentorial brain of stroke patients with abnormal yawning and contributing to the anatomical network concept of yawning control. Ten patients with acute anterior circulation stroke and ≥3 yawns/15 min without obvious cause were analyzed. The NIH stroke scale (NIHSS), Glasgow Coma Scale (GCS), symptom onset, period with abnormal yawning, blood oxygen saturation, glucose, body temperature, blood pressure, heart rate, and modified Rankin scale (mRS) were assessed for all patients. MRI lesion maps were segmented on diffusion-weighted images, spatially normalized, and the extent of overlap between the different stroke patterns was determined. Correlations between the period with abnormal yawning and the apparent diffusion coefficient (ADC) in the overlapping regions, total stroke volume, NIHSS and mRS were performed. Periods in which patients presented with episodes of abnormal yawning lasted on average for 58 h. Average GCS, NIHSS, and mRS scores were 12.6, 11.6, and 3.5, respectively. Clinical parameters were within normal limits. Ischemic brain lesions overlapped in nine out of ten patients: in seven patients in the insula and in seven in the caudate nucleus. The decrease of the ADC within the lesions correlated with the period with abnormal yawing (r = -0.76, Bonferroni-corrected p = 0.02). The stroke lesion intensity of the common overlapping regions in the insula and the caudate nucleus correlates with the period with abnormal yawning. The insula might be the long sought-after brain region for serotonin-mediated yawning.