835 resultados para Sense organs.
Resumo:
The glutamate transporters GLT-1 and GLAST are widely expressed in astrocytes in the brain where they fulfill important functions during glutamatergic neurotransmission. The present study examines their distribution in peripheral organs using in situ hybridization (ISH) and immunocytochemistry. GLAST was found to be more widely distributed than GLT-1. GLAST was expressed primarily in epithelial cells, cells of the macrophage-lineage, lymphocytes, fat cells, interstitial cells, and salivary gland acini. GLT-1 was primarily expressed in glandular tissue, including mammary gland, lacrimal gland, and ducts and acini in salivary glands, but also by perivenous hepatocytes and follicular dendritic cells in spleen and lymph nodes. The findings demonstrate that, although expressed by the same cells in the brain, these two glutamate transporters have different distribution patterns in peripheral tissues and that they fulfill glutamate transport functions apart from glutamatergic neurotransmission in these areas.
Resumo:
Francisella tularensis, a small Gram-negative facultative intracellular bacterium, is the causative agent of tularaemia, a severe zoonotic disease transmitted to humans mostly by vectors such as ticks, flies and mosquitoes. The disease is endemic in many parts of the northern hemisphere. Among animals, the most affected species belong to rodents and lagomorphs, in particular hares. However, in the recent years, many cases of tularaemia among small monkeys in zoos were reported. We have developed a real-time PCR that allows to quantify F. tularensis in tissue samples. Using this method, we identified the spleen and the kidney as the most heavily infected organ containing up to 400 F. tularensis bacteria per simian host cell in two common squirrel monkeys (Saimiri sciureus) from a zoo that died of tularaemia. In other organs such as the brain, F. tularensis was detected at much lower titres. The strain that caused the infection was identified as F. tularensis subsp. holarctica biovar I, which is susceptible to erythromycin. The high number of F. tularensis present in soft organs such as spleen, liver and kidney represents a high risk for persons handling such carcasses and explains the transmission of the disease to a pathologist during post-mortem analysis. Herein, we show that real-time PCR allows a reliable and rapid diagnosis of F. tularensis directly from tissue samples of infected animals, which is crucial in order to attempt accurate prophylactic measures, especially in cases where humans or other animals have been exposed to this highly contagious pathogen.
Resumo:
The pH(i) (intracellular pH) is an important physiological parameter which is altered during hypoxia and ischaemia, pathological conditions accompanied by a dramatic decrease in pH(i). Sensors of pH(i) include ion transport systems which control intracellular Ca2+ gradients and link changes in pH(i) to functions as diverse as proliferation and apoptosis. The annexins are a protein family characterized by Ca2+-dependent interactions with cellular membranes. Additionally, in vitro evidence points to the existence of pH-dependent, Ca(2+)-independent membrane association of several annexins. We show that hypoxia promotes the interaction of the recombinant annexin A2-S100A10 (p11) and annexin A6 with the plasma membrane. We have investigated in vivo the influence of the pH(i) on the membrane association of human annexins A1, A2, A4, A5 and A6 tagged with fluorescent proteins, and characterized this interaction for endogenous annexins present in smooth muscle and HEK (human embryonic kidney)-293 cells biochemically and by immunofluorescence microscopy. Our results show that annexin A6 and the heterotetramer A2-S100A10 (but not annexins A1, A4 and A5) interact independently of Ca2+ with the plasma membrane at pH 6.2 and 6.6. The dimerization of annexin A2 within the annexin A2-S100A10 complex is essential for the pH-dependent membrane interaction at this pH range. The pH-induced membrane binding of annexins A6 and A2-S100A10 might have consequences for their functions as membrane organizers and channel modulators.
Resumo:
The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory epithelia, the spiral ganglion, and the stria vascularis. Organ of Corti and vestibular sensory epithelial stem cells give rise to cells that express multiple hair cell markers and express functional ion channels reminiscent of nascent hair cells. Spiral ganglion stem cells display features of neural stem cells and can give rise to neurons and glial cell types. We found that the ability for sphere formation in the mouse cochlea decreases about 100-fold during the second and third postnatal weeks; this decrease is substantially faster than the reduction of stem cells in vestibular organs, which maintain their stem cell population also at older ages. Coincidentally, the relative expression of developmental and progenitor cell markers in the cochlea decreases during the first 3 postnatal weeks, which is in sharp contrast to the vestibular system, where expression of progenitor cell markers remains constant or even increases during this period. Our findings indicate that the lack of regenerative capacity in the adult mammalian cochlea is either a result of an early postnatal loss of stem cells or diminishment of stem cell features of maturing cochlear cells.
Resumo:
Various conventional and modern fluoroscope units had been examined with an anthropomorphic phantom to determine the applied average organ doses. The aim of our investigation was to compare these doses with those normally delivered to the patients during a conventional X-ray examination of the thorax. As was to be expected, the doses resulting from conventional fluoroscopic units are much higher than the doses from modern units. As shown by means of our measurements, the efforts of advanced technology permit to reduce the dose rate up to a factor of 30. I.e., the doses resulting from modern fluoroscopic units are even smaller than the doses received during a conventional thoracic X-ray examination, what means a great improvement for this examination technic.
Resumo:
Diuretics are commonly prescribed by physicians to contract the ECF volume. In two clinical situations combining different classes of diuretics make sense: First, if a loop diuretic at maximal dose alone does not lead to sufficient diuresis or second, if the side effect of a diuretic needs to be corrected by adding a diuretic of another class. The latter is clinically often used to counteract loop or thiazide diuretic-induced hypokalemia by the addition of a potassium sparing diuretic. Key to a reasonable combination of diuretics is understanding of the pharmaco-kinetics and knowledge of the molecular targets of the diuretics involved.