980 resultados para Semiempirical calculations
Resumo:
Lutein is a principal constituent of the human macular pigment. This study is composed of two projects. The first studies the conformational geometries of lutein and its potential adaptability in biological systems. The second is a study of the response of human subjects to lutein supplements. Using semi-empirical parametric method 3 (PM3) and density functional theory with the B3LYP/6-31G* basis set, the relative energies of s- cis conformers of lutein were determined. All 512 s-cis conformers were calculated with PM3. A smaller, representative group was also studied using density functional theory. PM3 results were correlated systematically to B3LYP values and this enables the results to be calibrated. The relative energies of the conformers range from 1-30 kcal/mole, and many are dynamically accessible at normal temperatures. Four commercial formulations containing lutein were studied. The serum and macular pigment (MP) responses of human subjects to these lutein supplements with doses of 9 or 20 mg/day were measured, relative to a placebo, over a six month period. In each instance, lutein levels in serum increased and correlated with MP increases. The results demonstrate that responses are significantly dependent upon formulation and that components other than lutein have an important influence serum response.
Resumo:
Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning including minimal invasive surgery, targeted drug delivery, and tumor resection. Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are essential for the determination of the tumor to normal liver ratio and for the calculation of the dose of Y-90 microspheres that will result in high concentration of the radiation in the tumor region as compared to nearby healthy tissue. Present manual techniques for segmentation of the liver from Computed Tomography (CT) tend to be tedious and greatly dependent on the skill of the technician/doctor performing the task. ^ This dissertation presents the development and implementation of a fully integrated algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as designed requires minimal human intervention without compromising the accuracy of the segmentation results. Embedded within this algorithm is an effective method for extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate treatment. ^ Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes in 20 datasets in comparison to the manual gold standard volumes. In a similar comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated the effectiveness of the algorithm in extracting and rendering the vasculature structure of the liver. Results of the parallel computing process, using a single workstation, showed a 78% gain. Also, statistical analysis carried out to determine if the manual initialization has any impact on the accuracy showed user initialization independence in the results. ^ The dissertation thus provides a complete 3-D solution towards liver cancer treatment planning with the opportunity to extract, visualize and quantify the needed statistics for liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and tumor volumes, this new method provides an effective and computationally efficient process required of such challenging clinical requirements.^
Resumo:
Porphyrins have been the center of numerous investigations in different areas of chemistry, geochemistry, and the life sciences. In nature the conformation of the porphyrin macrocycle varies, depending on the function of its apoenzyme. It is believed that the conformation of the porphyrin ring is necessary for the enzyme to achieve its function and modify its reactivity. It is important to understand how the conformation of the porphyrin ring will influence its properties. ^ In synthetic porphyrins particular conformations and ring deformations can be achieved by peripheral substitution, metallation, core substitution, and core protonation among other alterations of the macrocycle. The macrocyclic distortions will affect the ring current, the ability of pyrroles to intramolecularly hydrogen bond and the relative basicity of each of the porphyrins. To understand these effects different theoretical models are used. The ground state structure of each of 19 free base porphyrins is determined using molecular mechanics (MM+) and semiempirical methods (PM3). The energetics of deformation of the macrocyclic core is calculated by carrying out single point energy calculations for the conformation achieved by each synthetic compound. Enthalpies of solution and enthalpies of protonation of 10 porphyrins with varying degrees of macrocyclic deformation and varying electron withdrawing groups in the periphery are determined using solution calorimetry. Using Hess's Law, the relative basicity of each of the different free base porphyrins is calculated. NMR results are described, including the determination of free energies of activation of ring tautomerization and hydrogen bonding for several compounds. It was found that in the absence of electronic effects, the greater macrocyclic deformation, the greater the basicity of the porphyrins. This basicity is attenuated by the presence of electron withdrawing groups and ability to of the macrocycle to intramolecularly hydrogen bond. ^
Resumo:
The present study measures the increase in serum carotenoid concentration in 30 healthy individuals after supplementation with a low dose xanthophyll ester (3 and 6 mg of lutein equivalent/per day) when compared to a placebo. Serum levels of carotenoids were measured using HPLC and showed an increase in the concentration of lutein, zeaxanthin and four lutein metabolites proportional to dose. In order to further assess the importance of the end-group structure in carotenoids we have investigated the influence of the end-group type and functionality on the conformational energy barrier. We used the density functional method implemented on GAUSSIAN 98 to calculate the conformational energy curves for rotation of the P-ring or the E-ring relative to short polyene chains around the C6-C7 single bond. A large barrier is observed for the interconversion of conformers in the E-rings (8 kcal/mol) when compared to beta rings (2.3-3 kcal/mol).
Resumo:
Porphyrins have been the center of numerous investigations in different areas of chemistry, geochemistry, and the life sciences. In nature the conformation of the porphyrin macrocycle varies, depending on the function of its apoenzyme. It is believed that the conformation of the porphyrin ring is necessary for the enzyme to achieve its function and modify its reactivity. It is important to understand how the conformation of the porphyrin ring will influence its properties. In synthetic porphyrins particular conformations and ring deformations can be achieved by peripheral substitution, metallation, core substitution, and core protonation among other alterations of the macrocycle. The macrocyclic distortions will affect the ring current, the ability of pyrroles to intramolecularly hydrogen bond and the relative basicity of each of the porphyrins. To understand these effects different theoretical models are used. The ground state structure of each of 19 free base porphyrins is determined using molecular mechanics (MM+) and semiempirical methods (PM3). The energetics of deformation of the macrocyclic core is calculated by carrying out single point energy calculations for the conformation achieved by each synthetic compound. Enthalpies of solution and enthalpies of protonation of 10 porphyrins with varying degrees of macrocyclic deformation and varying electron withdrawing groups in the periphery are determined using solution calorimetry. Using Hess's Law, the relative basicity of each of the different free base porphyrins is calculated. NMR results are described, including the determination of free energies of activation of ring tautomerization and hydrogen bonding for several compounds. It was found that in the absence of electronic effects, the greater macrocyclic deformation, the greater the basicity of the porphyrins. This basicity is attenuated by the presence of electron withdrawing groups and ability to of the macrocycle to intramolecularly hydrogen bond.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Free energy calculations are a computational method for determining thermodynamic quantities, such as free energies of binding, via simulation.
Currently, due to computational and algorithmic limitations, free energy calculations are limited in scope.
In this work, we propose two methods for improving the efficiency of free energy calculations.
First, we expand the state space of alchemical intermediates, and show that this expansion enables us to calculate free energies along lower variance paths.
We use Q-learning, a reinforcement learning technique, to discover and optimize paths at low computational cost.
Second, we reduce the cost of sampling along a given path by using sequential Monte Carlo samplers.
We develop a new free energy estimator, pCrooks (pairwise Crooks), a variant on the Crooks fluctuation theorem (CFT), which enables decomposition of the variance of the free energy estimate for discrete paths, while retaining beneficial characteristics of CFT.
Combining these two advancements, we show that for some test models, optimal expanded-space paths have a nearly 80% reduction in variance relative to the standard path.
Additionally, our free energy estimator converges at a more consistent rate and on average 1.8 times faster when we enable path searching, even when the cost of path discovery and refinement is considered.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the "greenhouse" of the early Eocene to the "icehouse" of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive d13C excursion known as carbon maximum 6 ("M6"), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the d13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.
Resumo:
In this work we explore the validity of employing a modified version of the nonrelativistic structure code civ3 for heavy, highly charged systems, using Na-like tungsten as a simple benchmark. Consequently, we present radiative and subsequent collisional atomic data compared with corresponding results from a fully relativistic structure and collisional model. Our motivation for this line of study is to benchmark civ3 against the relativistic grasp0 structure code. This is an important study as civ3 wave functions in nonrelativistic R-matrix calculations are computationally less expensive than their Dirac counterparts. There are very few existing data for the W LXIV ion in the literature with which we can compare except for an incomplete set of energy levels available from the NIST database. The overall accuracy of the present results is thus determined by the comparison between the civ3 and grasp0 structure codes alongside collisional atomic data computed by the R-matrix Breit-Pauli and Dirac codes. It is found that the electron-impact collision strengths and effective collision strengths computed by these differing methods are in good general agreement for the majority of the transitions considered, across a broad range of electron temperatures.
Resumo:
Metal cylindrical storage structures of significant size, such as silos and vertical-axis tanks, are almost always constructed from many short cylindrical shells of different thickness as the stress resultants on the wall progressively increase towards the base. The resulting increases in thickness are always made in step changes using metal sheets of uniform thickness because of the availability of such source materials. The result is a shell with a stepped wall with multiple discrete steps in thickness. Such shells are very susceptible to buckling under external pressure when empty or partially filled, but the buckling mode may involve only part of the shell height due to the changes in shell thickness. These changes must therefore be accounted for within the design process. A new method of determining the critical buckling resistance of such shells was recently developed, and although it has been shown to be valid, the methodology for its application in practical design has not been set out or shown. This paper therefore briefly describes the new method and demonstrates the manner in which it can be used to produce rapid, safe assessments of cylindrical shells with a wide range of patterns of wall thickness changes. The results are then suitable for direct introduction into such documents as the European standard on metal shells [1] and the ECCS Recommendations [2].
Resumo:
A two stage approach to performing ab initio calculations on medium and large sized molecules is described. The first step is to perform SCF calculations on small molecules or molecular fragments using the OPIT Program. This employs a small basis set of spherical and p-type Gaussian functions. The Gaussian functions can be identified very closely with atomic cores, bond pairs, lone pairs, etc. The position and exponent of any of the Gaussian functions can be varied by OPIT to produce a small but fully optimised basis set. The second stage is the molecular fragments method. As an example of this, Gaussian exponents and distances are taken from an OPIT calculation on ethylene and used unchanged in a single SCF calculation on benzene. Approximate ab initio calculations of this type give much useful information and are often preferable to semi-empirical approaches, since the nature of the approximations involved is much better defined.