987 resultados para Sedimentary rocks
Resumo:
Detrital zircons from Holocene beach sand and igneous zircons from the Cretaceous syenite forming Cape Sines (Western Iberian margin) were dated
using laser ablation – inductively coupled plasma – mass spectrometry. The
U–Pb ages obtained were used for comparison with previous radiometric
data from Carboniferous greywacke, Pliocene–Pleistocene sand and Cretaceous syenite forming the sea cliff at Cape Sines and the contiguous coast.
New U–Pb dating of igneous morphologically simple and complex zircons
from the syenite of the Sines pluton suggests that the history of zircon crystallization was more extensive (ca 87 to 74 Ma), in contrast to the findings of
previous geochronology studies (ca 76 to 74 Ma). The U–Pb ages obtained in
Holocene sand revealed a wide interval, ranging from the Cretaceous to the
Archean, with predominance of Cretaceous (37%), Palaeozoic (35%) and
Neoproterozoic (19%) detrital-zircon ages. The paucity of round to subrounded grains seems to indicate a short transportation history for most of
the Cretaceous zircons (ca 95 to 73 Ma) which are more abundant in the
beach sand that was sampled south of Cape Sines. Comparative analysis
using the Kolmogorov–Smirnov statistical method, analysing sub-populations separately, suggests that the zircon populations of the Carboniferous
and Cretaceous rocks forming the sea cliff were reproduced faithfully in
Quaternary sand, indicating sediment recycling. The similarity of the pre-
Cretaceous ages (>ca 280 Ma) of detrital zircons found in Holocene sand, as
compared with Carboniferous greywacke and Pliocene–Pleistocene sand, provides support for the hypothesis that detritus was reworked into the beach
from older sedimentary rocks exposed along the sea cliff. The largest percentage of Cretaceous zircons (
Resumo:
Soils formed in high mountainous regions in southern Brazil are characterized by great accumulation of organic matter (OM) in the surface horizons and variation in the degree of development. We hypothesized that soil properties and genesis are influenced by the interaction of parent materials and climate factors, which differ depending on the location along the altitudinal gradient. The goal of this study was to characterize and classify the soil, evaluate soil distribution, and determine the interactive effects of soil-forming factors in the subtropical mountain regions in Santa Catarina state. Soil samples were collected in areas known for wine production, for a total of 38 modal profiles. Based on morphological, physical, and chemical properties, soils were evaluated for pedogenesis and classified according to the Brazilian System of Soil Classification, with equivalent classes in the World Reference Basis (WRB). The results indicated that pedogenesis was strongly influenced by the parent material, weather, and relief. In the areas where basic effusive rocks (basalt) were observed, there was formation of extensive areas of clayey soils with reddish color and higher iron oxide contents. There was a predominance of Nitossolos Vermelhos and Háplicos (Nitisols), Latossolos Vermelhos (Ferralsols), and Cambissolos Háplicos (Cambisols), highlighting the pedogenetic processes of eluviation, illuviation of clay, and latosolization in conditions of year-long, large-volume, well-distributed rainfall and stability of land forms. In areas with acid effusive rocks (rhyodacites), medial or clayey soils were observed with lower iron oxide content, invariably acidic, and with low base content. For these soils, relief promoted substantial removal of material, resulting in intense rejuvenation, with a predominance of Cambissolos Háplicos (Cambisols) and lesser occurrence of Nitossolos Brunos (Nitisols) and Neossolos Litólicos (Leptosols). Soils formed from sedimentary rocks also tended to be more acidic, but with higher sand content, and the soils identified were Cambissolos Háplicos and Húmicos (Cambisols). Cluster analysis separated the soil profiles into three groups: the first and largest was formed by profiles originating from sedimentary rocks and rhyodacites; the second, smaller group was formed by four profiles in the Água Doce region (acidic rocks); and the third was formed by profiles derived from basalt. Discriminant analysis was effective in grouping soil classes. Thus, the study highlighted the importance of geology in the formation of soils in this landscape associated with climate and relief.
Resumo:
Understanding and quantifying seismic energy dissipation, which manifests itself in terms of velocity dispersion and attenuation, in fluid-saturated porous rocks is of considerable interest, since it offers the perspective of extracting information with regard to the elastic and hydraulic rock properties. There is increasing evidence to suggest that wave-induced fluid flow, or simply WIFF, is the dominant underlying physical mechanism governing these phenomena throughout the seismic, sonic, and ultrasonic frequency ranges. This mechanism, which can prevail at the microscopic, mesoscopic, and macroscopic scale ranges, operates through viscous energy dissipation in response to fluid pressure gradients and inertial effects induced by the passing wavefield. In the first part of this thesis, we present an analysis of broad-band multi-frequency sonic log data from a borehole penetrating water-saturated unconsolidated glacio-fluvial sediments. An inherent complication arising in the interpretation of the observed P-wave attenuation and velocity dispersion is, however, that the relative importance of WIFF at the various scales is unknown and difficult to unravel. An important generic result of our work is that the levels of attenuation and velocity dispersion due to the presence of mesoscopic heterogeneities in water-saturated unconsolidated clastic sediments are expected to be largely negligible. Conversely, WIFF at the macroscopic scale allows for explaining most of the considered data while refinements provided by including WIFF at the microscopic scale in the analysis are locally meaningful. Using a Monte-Carlo-type inversion approach, we compare the capability of the different models describing WIFF at the macroscopic and microscopic scales with regard to their ability to constrain the dry frame elastic moduli and the permeability as well as their local probability distribution. In the second part of this thesis, we explore the issue of determining the size of a representative elementary volume (REV) arising in the numerical upscaling procedures of effective seismic velocity dispersion and attenuation of heterogeneous media. To this end, we focus on a set of idealized synthetic rock samples characterized by the presence of layers, fractures or patchy saturation in the mesocopic scale range. These scenarios are highly pertinent because they tend to be associated with very high levels of velocity dispersion and attenuation caused by WIFF in the mesoscopic scale range. The problem of determining the REV size for generic heterogeneous rocks is extremely complex and entirely unexplored in the given context. In this pilot study, we have therefore focused on periodic media, which assures the inherent self- similarity of the considered samples regardless of their size and thus simplifies the problem to a systematic analysis of the dependence of the REV size on the applied boundary conditions in the numerical simulations. Our results demonstrate that boundary condition effects are absent for layered media and negligible in the presence of patchy saturation, thus resulting in minimum REV sizes. Conversely, strong boundary condition effects arise in the presence of a periodic distribution of finite-length fractures, thus leading to large REV sizes. In the third part of the thesis, we propose a novel effective poroelastic model for periodic media characterized by mesoscopic layering, which accounts for WIFF at both the macroscopic and mesoscopic scales as well as for the anisotropy associated with the layering. Correspondingly, this model correctly predicts the existence of the fast and slow P-waves as well as quasi and pure S-waves for any direction of wave propagation as long as the corresponding wavelengths are much larger than the layer thicknesses. The primary motivation for this work is that, for formations of intermediate to high permeability, such as, for example, unconsolidated sediments, clean sandstones, or fractured rocks, these two WIFF mechanisms may prevail at similar frequencies. This scenario, which can be expected rather common, cannot be accounted for by existing models for layered porous media. Comparisons of analytical solutions of the P- and S-wave phase velocities and inverse quality factors for wave propagation perpendicular to the layering with those obtained from numerical simulations based on a ID finite-element solution of the poroelastic equations of motion show very good agreement as long as the assumption of long wavelengths remains valid. A limitation of the proposed model is its inability to account for inertial effects in mesoscopic WIFF when both WIFF mechanisms prevail at similar frequencies. Our results do, however, also indicate that the associated error is likely to be relatively small, as, even at frequencies at which both inertial and scattering effects are expected to be at play, the proposed model provides a solution that is remarkably close to its numerical benchmark. -- Comprendre et pouvoir quantifier la dissipation d'énergie sismique qui se traduit par la dispersion et l'atténuation des vitesses dans les roches poreuses et saturées en fluide est un intérêt primordial pour obtenir des informations à propos des propriétés élastique et hydraulique des roches en question. De plus en plus d'études montrent que le déplacement relatif du fluide par rapport au solide induit par le passage de l'onde (wave induced fluid flow en anglais, dont on gardera ici l'abréviation largement utilisée, WIFF), représente le principal mécanisme physique qui régit ces phénomènes, pour la gamme des fréquences sismiques, sonique et jusqu'à l'ultrasonique. Ce mécanisme, qui prédomine aux échelles microscopique, mésoscopique et macroscopique, est lié à la dissipation d'énergie visqueuse résultant des gradients de pression de fluide et des effets inertiels induits par le passage du champ d'onde. Dans la première partie de cette thèse, nous présentons une analyse de données de diagraphie acoustique à large bande et multifréquences, issues d'un forage réalisé dans des sédiments glaciaux-fluviaux, non-consolidés et saturés en eau. La difficulté inhérente à l'interprétation de l'atténuation et de la dispersion des vitesses des ondes P observées, est que l'importance des WIFF aux différentes échelles est inconnue et difficile à quantifier. Notre étude montre que l'on peut négliger le taux d'atténuation et de dispersion des vitesses dû à la présence d'hétérogénéités à l'échelle mésoscopique dans des sédiments clastiques, non- consolidés et saturés en eau. A l'inverse, les WIFF à l'échelle macroscopique expliquent la plupart des données, tandis que les précisions apportées par les WIFF à l'échelle microscopique sont localement significatives. En utilisant une méthode d'inversion du type Monte-Carlo, nous avons comparé, pour les deux modèles WIFF aux échelles macroscopique et microscopique, leur capacité à contraindre les modules élastiques de la matrice sèche et la perméabilité ainsi que leur distribution de probabilité locale. Dans une seconde partie de cette thèse, nous cherchons une solution pour déterminer la dimension d'un volume élémentaire représentatif (noté VER). Cette problématique se pose dans les procédures numériques de changement d'échelle pour déterminer l'atténuation effective et la dispersion effective de la vitesse sismique dans un milieu hétérogène. Pour ce faire, nous nous concentrons sur un ensemble d'échantillons de roches synthétiques idéalisés incluant des strates, des fissures, ou une saturation partielle à l'échelle mésoscopique. Ces scénarios sont hautement pertinents, car ils sont associés à un taux très élevé d'atténuation et de dispersion des vitesses causé par les WIFF à l'échelle mésoscopique. L'enjeu de déterminer la dimension d'un VER pour une roche hétérogène est très complexe et encore inexploré dans le contexte actuel. Dans cette étude-pilote, nous nous focalisons sur des milieux périodiques, qui assurent l'autosimilarité des échantillons considérés indépendamment de leur taille. Ainsi, nous simplifions le problème à une analyse systématique de la dépendance de la dimension des VER aux conditions aux limites appliquées. Nos résultats indiquent que les effets des conditions aux limites sont absents pour un milieu stratifié, et négligeables pour un milieu à saturation partielle : cela résultant à des dimensions petites des VER. Au contraire, de forts effets des conditions aux limites apparaissent dans les milieux présentant une distribution périodique de fissures de taille finie : cela conduisant à de grandes dimensions des VER. Dans la troisième partie de cette thèse, nous proposons un nouveau modèle poro- élastique effectif, pour les milieux périodiques caractérisés par une stratification mésoscopique, qui prendra en compte les WIFF à la fois aux échelles mésoscopique et macroscopique, ainsi que l'anisotropie associée à ces strates. Ce modèle prédit alors avec exactitude l'existence des ondes P rapides et lentes ainsi que les quasis et pures ondes S, pour toutes les directions de propagation de l'onde, tant que la longueur d'onde correspondante est bien plus grande que l'épaisseur de la strate. L'intérêt principal de ce travail est que, pour les formations à perméabilité moyenne à élevée, comme, par exemple, les sédiments non- consolidés, les grès ou encore les roches fissurées, ces deux mécanismes d'WIFF peuvent avoir lieu à des fréquences similaires. Or, ce scénario, qui est assez commun, n'est pas décrit par les modèles existants pour les milieux poreux stratifiés. Les comparaisons des solutions analytiques des vitesses des ondes P et S et de l'atténuation de la propagation des ondes perpendiculaires à la stratification, avec les solutions obtenues à partir de simulations numériques en éléments finis, fondées sur une solution obtenue en 1D des équations poro- élastiques, montrent un très bon accord, tant que l'hypothèse des grandes longueurs d'onde reste valable. Il y a cependant une limitation de ce modèle qui est liée à son incapacité à prendre en compte les effets inertiels dans les WIFF mésoscopiques quand les deux mécanismes d'WIFF prédominent à des fréquences similaires. Néanmoins, nos résultats montrent aussi que l'erreur associée est relativement faible, même à des fréquences à laquelle sont attendus les deux effets d'inertie et de diffusion, indiquant que le modèle proposé fournit une solution qui est remarquablement proche de sa référence numérique.
Resumo:
The optically stimulated luminescence (OSL) sensitivity of quartz has a significant influence on luminescence dating procedures. Furthermore, identifying the natural controls of quartz OSL sensitivity is an important step towards new applications of OSL in geology such as provenance tracing. We evaluate the OSL sensitivity (total and the proportion of the informally assigned fast, medium and slow components) of single grains of quartz extracted from 10 different igneous and metamorphic rocks with known formation conditions; and from fluvial and coastal sediments with different sedimentary histories and known source rocks. This sample suite allows assessment of the variability of the OSL sensitivity of single quartz grains with respect to their primary origin and sedimentary history. We observed significant variability in the OSL sensitivity of grains within all studied rock and sediment samples, with the brightest grains of each sample being those dominated by the fast component. Quartz from rocks formed under high temperature (> 500 degrees C) conditions, such as rhyolites and metamorphic rocks from the amphibolite facies, display higher OSL sensitivity. The OSL sensitivity of fluvial sediments which have experienced only a short transport distance is relatively low. These sediments show a small increase in OSL sensitivity downstream, mainly due to a decreasing fraction of ""dim"" grains. The quartz grains from coastal sands present very high sensitivity and variability, which is consistent with their long sedimentary history. The high variability of the OSL sensitivity of quartz from coastal sands is attributed more to the mixture of grains with distinct sedimentary histories than to the provenance from many types of source rocks. The temperature of crystallization and the number of cycles of burial and solar exposure are suggested as the main natural factors controlling the OSL sensitivity of quartz grains. The increase in OSL sensitivity due to cycles of erosion and deposition surpasses the sensitivity inherited from the source rock, with this increase being mainly related to the sensitization of fast OSL components. The discrimination of grains with different sedimentary histories through their OSL sensitivities can allow the development of quantitative provenance methods based on quartz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This is the first detailed study of the westernmost portion of the outcrop belt, which extends along the western flank of the Talkeetna Mountains and includes thick, well-exposed outcrops along Willow Creek in the eastern Susitna basin. New sedimentologic, compositional, and geochronologic data were obtained from stratigraphic sections within Arkose Ridge Formation strata at Willow Creek. This data combined with new geologic mapping and geochronologic data from Willow Bench and Kashwitna River Bluff (north of Willow Creek), and from the Government Peak area (east of Willow Creek), help constrain depositional processes and source terranes that provided detritus to the westernmost Arkose Ridge Formation strata.
Resumo:
This collective monography by a group of lithologists from the Geological Institute of the USSR Academy of Sciences summarizes materials of the Deep-Sea Drilling Project from the Atlantic Ocean. It gives results of processing materials on the sequences drilled during DSDP Legs 41, 45, 48 and 49. These studies were based on lithological-facial analysis combined with detailed mineralogical-petrographic description. Its chapters give a number of ideas on formation of the Earth sedimentary cover, which can be used for compilation of regional and global schemes of ocean paleogeography, reconstruction of history of some structures in the World Ocean, correlation between sedimentary processes on continents and in oceans, estimation of perspectives for oil and gas fields and ore formation.
Resumo:
Petrographic, mineralogical, and stable isotopes (delta C-13, delta O-18 values) compositions were used to characterise marbles and sedimentary carbonate rocks from central Morocco, which are considered to be a likely source of ornamental and building material from Roman time to the present day. This new data set was used in the frame of an archaeometric provenance study on Roman artefacts from the town of Thamusida (Kenitra, north Morocco), to assess the potential employment of these rocks for the manufacture of the archaeological materials. A representative set of samples from marbles and other carbonate rocks (limestone, dolostone) were collected in several quarries and outcrops in the Moroccan Meseta, in a region extending from the Meknes-Khenifra alignment to the Atlantic Ocean. All the samples were studied using a petrographic, mineralogical and geochemical methods. The petrographic and minerological investigations (optical microscopy, electron microscopy, X-ray diffraction) allowed to group the carbonate rocks in limestones, foliated limestone, diagenetic breccias and dolostone. The limestones could be further grouped as mudstones, wackestones-packstones, crinoid grainstones, oolitic grainstone and floatstones. Textural differences allowed to define marbles varieties. The stable carbon and oxygen isotope composition proved to be quite useful in the discrimination of marble sources, with apparently less discriminatory potential for carbonate rocks.
Resumo:
The understanding of sedimentary evolution is intimately related to the knowledge of the exact ages of the sediments. When working on carbonate sediments, age dating is commonly based on paleontological observations and established biozonations, which may prove to be relatively imprecise. Dating by means of strontium isotope ratios in marine bioclasts is the probably best method in order to precisely date carbonate successions, provided that the sample reflects original marine geochemical characteristics. This requires a precise study of the samples including its petrography, SEM and cathodoluminescence observations, stable carbon and oxygen isotope geochemistry and finally the strontium isotope measurement itself. On the Nicoya Peninsula (Northwestern Costa Rica) sediments from the Piedras Blancas Formation, Nambi Formation and Quebrada Pavas Formation were dated by the means of strontium isotope ratios measured in Upper Cretaceous Inoceramus shell fragments. Results have shown average 87Sr/86Sr values of 0.707654 (middle late Campanian) for the Piedras Blancas Formation, 0.707322 (Turonian-Coniacian) for the Nambi Formation and 0.707721 (late Campanian-Maastrichtian) for the Quebrada Pavas Formation. Abundant detrital components in the studied formations constitute a difficulty to strontium isotope dating. In fact, the fossil bearing sediments can easily contaminate the target fossil with strontium mobilized form basalts during diagenesis and thus the obtained strontium isotope ratios may be influenced significantly and so will the obtained ages. The new and more precise age assignments allow for more precision in the chronostratigraphic chart of the sedimentary and tectonic evolution of the Nicoya Peninsula, providing a better insight on the evolution of this region. Meteor Cruise M81 dredged shallow water carbonates from the Hess Rise and Hess Escarpment during March 2010. Several of these shallow water carbonates contain abundant Larger Foraminifera that indicates an Eocene-Oligocene age. In this study the strontium isotope values ranging from 0.707847 to 0.708238 can be interpreted as a Rupelian to Chattian age of these sediments. These platform sediments are placed on seamounts, now located at depths reaching 1600 m. Observation of sedimentologic characteristics of these sediments has helped to resolve apparent discrepancies between fossil and strontium isotope ages. Hence, it is possible to show that the subsidence was active during early Miocene times. On La Désirade (Guadeloupe France), the Neogene to Quaternary carbonate cover has been dated by microfossils and some U/Th-ages. Disagreements subsisted in the paleontological ages of the formations. Strontium isotope ratios ranging from 0.709047 to 0.709076 showed the Limestone Table of La Désirade to range from an Early Pliocene to Late Pliocene/early Pleistocene age. A very late Miocene age (87Sr/86Sr =0.709013) can be determined to the Detrital Offshore Limestone. The flat volcanic basement had to be eroded by wave-action during a long-term stable relative sea-level. Sediments of the Table Limestone on La Désirade show both low-stand and high-stand facies that encroach on the igneous basement, implying deposition during a major phase of subsidence creating accommodation space. Subsidence is followed by tectonic uplift documented by fringing reefs and beach rocks that young from the top of the Table Limestone (180 m) towards the present coastline. Strontium isotope ratios from two different fringing reefs (0.707172 and 0.709145) and from a beach rock (0.709163) allow tentative dating, (125ky, ~ 400ky, 945ky) and indicate an uplift rate of about 5cm/ky for this time period of La Désirade Island. The documented subsidence and uplift history calls for a new model of tectonic evolution of the area.
Resumo:
Abundant veins filled by calcite, celestite and pyrite were found in the core of a 719 m deep borehole drilled in Oftringen near Olten, located in the north-western Molasse basin, close to the thrust of the Folded Jura. Host rocks are calcareous marl, argillaceous limestone and limestone of the Dogger and Malm. The delta O-18 values of vein calcite are lower than in host rock carbonate and, together with microthermometric data from fluid inclusions in vein calcite, indicate precipitation from a seawater-dominated fluid at average temperatures of 56-68A degrees C. Such temperatures were reached at the time of maximum burial of the sedimentary pile in the late Miocene. The depth profile of delta C-13 and Sr-87/Sr-86 values and Sr content of both whole-rock carbonate and vein calcite show marked trends towards negative delta C-13, high Sr-87/Sr-86, and low Sr content in the uppermost 50-150 m of the Jurassic profile (upper Oxfordian). The Sr-87/Sr-86 of vein minerals is generally higher than that of host rock carbonate, up to very high values corresponding to Burdigalian seawater (Upper Marine Molasse, Miocene), which represents the last marine incursion in the region. No evidence for internally derived radiogenic Sr (clay minerals) has been found and so an external source is required. S and O isotope composition of vein celestite and pyrite can be explained by bacterial reduction of Miocene seawater sulphate. The available data set suggests the vein mineralization precipitated from descending Burdigalian seawater and not from a fluid originating in the underlying Triassic evaporites.
Resumo:
The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Brianconnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation of an embryonic oceanic crust. The re-interpretation of the rift evolution and the architecture of the distal rifted margins in the Alps have important implications for the understanding of rifted margins worldwide, but also for the paleogeographic reconstruction of the Alpine domain and its subsequent Alpine compressional overprint.
Resumo:
Three repetitive sequences of northward youngIng, east striking, linear, volcano-sedimentary units are found in the late Archaean BeardmoreGeraldton greenstone belt, situated within the Wabigoon subprovince of the Superior Province of northwestern Ontario. The volcanic components are characterised by basaltic flows that are pillowed at the top and underlain by variably deformed massive flows which may In part be intrusive. Petrographic examination of the volcanic units indicates regional metamorphism up to greenschist facies (T=3250 C - 4500 C, P=2kbars) overprinted by a lower amphibolite facies thermal event (T=5750 C, P=2kbars) confined to the south-eastern portion of the belt. Chemical element results suggest olivine, plagioclase and pyroxene are the main fractionating mineral phases. Mobility studies on the varIOUS chemical elements indicate that K, Ca, Na and Sr are relatively mobile, while P, Zr, Ti, Fet (total iron = Fe203) and Mg are relatively immobile. Discriminant diagrams employing immobile element suggests that the majority of the samples are of oceanic affinity with a minor proportion displaying an island arc affinity. Such a transitional tectonic setting IS also refle.cted in REE data where two groups of volcanic samples are recognised. Oceanic tholeiites are LREE depleted with [La/Sm] N = 0.65 and a relatively flat HREE profile with [Sm/Yb] N = 1.2. Island arc type basalts (calc-alkaline) are LREE enriched, with a [La/Sm] N = 1.6, and a relatively higher fractionated HREE profile with [Sm/Yb] N = 1.9. Petrogenetic modelling performed on oceanIC tholeiites suggests derivation from a depleted spinel lherzolite source which undergoes 20% partial melting. Island arc type basalts can be derived by 10% partial melting of a hypothetical amphibolitised oceanic tholeiite source. The majority of the volcanic rocks in the Beardmore-Geraldton Belt are interpreted to represent fragments of oceanic crust trapped at a consuming plate margin. Subsequent post accretionary intrusion of gabbroic rocks (sensu lato) with calc-alkaline affinity is considered to result in the apparent hybrid tectonic setting recognized for the BGB.
Resumo:
Este tipo de rocas se encuentran por toda la superficie de la Tierra y se han utilizado a lo largo de la historia, para la construcción, cómo combustible e, incluso para la alimentación. Existen diferentes tipos de estas rocas según su origen: el arrastre de fragmentos de rocas atacadas por la meteorización y depósitados en los deltas, lagos y océanos; bien, los residuos de conchas y esqueletos de diminutos organismos marinos también depositados en el fondo del mar, o la evaporación del agua en lagos y mares poco profundos en los desiertos, que deja una costra de sales minerales. Al final del libro hay una pequeña bibliografía y direcciones de páginas web.
Resumo:
The Itajai Basin located in the southern border of the Luis Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajai Group is represented by sandstones and conglomerates (BaA(0) Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeiro Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeiro Neisse (arkosic sandstones and siltites), and Ribeiro do Bode (distal silty turbidites) formations. The ApiA(0)na Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajai Basin. The Brusque Group and the Florianpolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, So Miguel and CamboriA(0) complexes. The lack of any oceanic crust in the Itajai Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajai Basin is temporally and tectonically correlated with the Camaqu Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriapolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.
Resumo:
The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine +/- orthopyroxene +/- clinopyroxene +/- plagioclase: their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The (87)Sr/(16)Sr (around 0.703) and (143)Nd/(144)Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the (147)Sm/(144)Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ((87)Sr/(86)Sr and (143)Nd/(144)Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths. (C) 2009 Elsevier B.V. All rights reserved.