999 resultados para Science Forensique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microgravity fluid physics is an important part of microgravity sciences, which consists of simple fluids of many new systems, gas-liquid two-phase flow and heat transfer, and complex fluid mechanics. In addition to the importance of itself in sciences and applications, microgravity fluid physics closely relates to microgravity combustion, space biotechnology and space materials science, and promotes the developments of interdisciplinary fields. Many space microgravity experiments have been per- formed on board the recoverable satellites and space ships of China and pushed the rapid development of microgravity sciences in China. In the present paper, space experimental studies and the main re- sults of the microgravity fluid science in China in the last 10 years or so are introduced briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-governmental organizations (NGOs) are now major players in the realm of environmental conservation. While many environmental NGOs started as national organizations focused around single-species protection, governmental advocacy, and preservation of wilderness, the largest now produce applied conservation science and work with national and international stakeholders to develop conservation solutions that work in tandem with local aspirations. Marine managed areas (MMAs) are increasingly being used as a tool to manage anthropogenic stressors on marine resources and protect marine biodiversity. However, the science of MMA is far from complete. Conservation International (CI) is concluding a 5 year, $12.5 million dollar Marine Management Area Science (MMAS) initiative. There are 45 scientific projects recently completed, with four main “nodes” of research and conservation work: Panama, Fiji, Brazil, and Belize. Research projects have included MMA ecological monitoring, socioeconomic monitoring, cultural roles monitoring, economic valuation studies, and others. MMAS has the goals of conducting marine management area research, building local capacity, and using the results of the research to promote marine conservation policy outcomes at project sites. How science is translated into policy action is a major area of interest for science and technology scholars (Cash and Clark 2001; Haas 2004; Jasanoff et al. 2002). For science to move policy there must be work across “boundaries” (Jasanoff 1987). Boundaries are defined as the “socially constructed and negotiated borders between science and policy, between disciplines, across nations, and across multiple levels” (Cash et al. 2001). Working across the science-policy boundary requires boundary organizations (Guston 1999) with accountability to both sides of the boundary, among other attributes. (Guston 1999; Clark et al. 2002). This paper provides a unique case study illustrating how there are clear advantages to collaborative science. Through the MMAS initiative, CI built accountability into both sides of the science-policy boundary primarily through having scientific projects fed through strong in-country partners and being folded into the work of ongoing conservation processes. This collaborative, boundary-spanning approach led to many advantages, including cost sharing, increased local responsiveness and input, better local capacity building, and laying a foundation for future conservation outcomes. As such, MMAS can provide strong lessons for other organizations planning to get involved in multi-site conservation science. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beachfront jurisdictional lines were established by the South Carolina Beachfront Management Act (SC Code §48- 39-250 et seq.) in 1988 to regulate the new construction, repair, or reconstruction of buildings and erosion control structures along the state’s ocean shorelines. Building within the state’s beachfront “setback area” is allowed, but is subject to special regulations. For “standard beaches” (those not influenced by tidal inlets or associated shoals), a baseline is established at the crest of the primary oceanfront sand dune; for “unstabilized inlet zones,” the baseline is drawn at the most landward point of erosion during the past forty years. The parallel setback line is then established landward of the baseline a distance of forty times the long-term average annual erosion rate (not less than twenty feet from the baseline in stable or accreting areas). The positions of the baseline and setback line are updated every 8-10 years using the best available scientific and historical data, including aerial imagery, LiDAR, historical shorelines, beach profiles, and long-term erosion rates. One advantage of science-based setbacks is that, by using actual historical and current shoreline positions and beach profile data, they reflect the general erosion threat to beachfront structures. However, recent experiences with revising the baseline and setback line indicate that significant challenges and management implications also exist. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description.

Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems.

Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via ’classical’ molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a ’first principles’ approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores the diversity of scientific disciplines and paradigms, their relevance for policy development, how policy emerges throughout society,-and the mechanisms by which scientists can promote the value of science in policy formation. The author gives examples from various countries where freshwater science was used to inform policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article outlines the development of freshwater science between 1900 and 2000 and in particular traces British contributions, both to a deepened knowledge of specifics and to their interrelation as environmental and ecological science. The author provides a selected bibliography of important publications relevant to the topic of the article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dissertação comenta criticamente as interpretações recentes referentes ao vitalismo no século XVIII, dedicando atenção especial aos Nouveuax Éléments de la Science de lHomme (publicado primeiramente em 1778), de Paul-Joseph Barthez (1734-1806). Até a segunda metade do século XX, como é primeiramente argumentado nesta dissertação, intérpretes do iluminismo entendiam a doutrina mecanicista como a herdeira direta da Revolução Científica, bem como a corrente dominante no mundo das ciências da vida ao longo de todo o século XVIII. Assim, na historiografia do século passado, o vitalismo era ou escassamente mencionado, ou visto como uma retrógrada corrente anti-iluminista. Mais recentemente, vários historiadores e pesquisadores da história das ciências no século XVIII (sobretudo Williams e Reill) entendem o iluminismo de um modo mais amplo e plural, considerando o vitalismo iluminista (um termo proposto por Reill) como parte integrante de um conceito mais dinâmico de iluminismo. A seguir, são apresentados a doutrina mecanicista e seus conceitos centrais, bem como as ideias de alguns dos principais representantes do mecanicismo no século XVII e início do XVIII, no caso, mais especificamente, do mecanicismo newtoniano. Em seguida, são expostos e comentados a doutrina vitalista e seus conceitos, no que é dado destaque ao vitalismo na Universidade de Montpellier. Nesse contexto, são comentados conceitos vitalistas, tal como apresentados nos Nouveuax Éléments de la Science de lHomme, no qual Barthez propõe uma nova fisiologia baseada no princípio vital; nisso são apresentados sua metodologia de pesquisa, o conceito de princípio vital, as forças sensitivas e motrizes do princípio da vida, além dos conceitos de simpatia, sinergia e, por fim, o conceito de temperamento. Esses conceitos ou essa terminologia , tal como é mostrado, não são originalmente concebidos por Barthez, mas foram por ele reapropriados e reformulados em debate com o newtonianismo e demais correntes filosóficas médicas desde a Antiguidade até o século XVIII, assim como com observações e experimentos próprios às investigações médico-científicas da época. Como resultado, é alcançada uma compreensão da doutrina vitalista como um esforço intelectual inovador tanto interagindo quanto integrado com o debate científico contemporâneo, ou seja, os médicos vitalistas se viam e, em geral, eram vistos como atuando segundo os padrões de cientificidade exigidos por seus pares.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces a new listing of published scientific contributions from the Freshwater Biological Association (FBA) and its later Research Council associates – the Institute of Freshwater Ecology (1989–2000) and the Centre for Ecology and Hydrology (2000+). The period 1929–2006 is covered. The authors offer also information on specific features of the listing; also an outline of influences that underlay the research, and its scientific scope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intent of this study is to provide formal apparatus which facilitates the investigation of problems in the methodology of science. The introduction contains several examples of such problems and motivates the subsequent formalism.

A general definition of a formal language is presented, and this definition is used to characterize an individual’s view of the world around him. A notion of empirical observation is developed which is independent of language. The interplay of formal language and observation is taken as the central theme. The process of science is conceived as the finding of that formal language that best expresses the available experimental evidence.

To characterize the manner in which a formal language imposes structure on its universe of discourse, the fundamental concepts of elements and states of a formal language are introduced. Using these, the notion of a basis for a formal language is developed as a collection of minimal states distinguishable within the language. The relation of these concepts to those of model theory is discussed.

An a priori probability defined on sets of observations is postulated as a reflection of an individual’s ontology. This probability, in conjunction with a formal language and a basis for that language, induces a subjective probability describing an individual’s conceptual view of admissible configurations of the universe. As a function of this subjective probability, and consequently of language, a measure of the informativeness of empirical observations is introduced and is shown to be intuitively plausible – particularly in the case of scientific experimentation.

The developed formalism is then systematically applied to the general problems presented in the introduction. The relationship of scientific theories to empirical observations is discussed and the need for certain tacit, unstatable knowledge is shown to be necessary to fully comprehend the meaning of realistic theories. The idea that many common concepts can be specified only by drawing on knowledge obtained from an infinite number of observations is presented, and the problems of reductionism are examined in this context.

A definition of when one formal language can be considered to be more expressive than another is presented, and the change in the informativeness of an observation as language changes is investigated. In this regard it is shown that the information inherent in an observation may decrease for a more expressive language.

The general problem of induction and its relation to the scientific method are discussed. Two hypotheses concerning an individual’s selection of an optimal language for a particular domain of discourse are presented and specific examples from the introduction are examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review article looking at the type of information requirements commonly shared by scientists and their use of traditional information services. Areas covered include primary requirements of IFE (Institute of Freshwater Ecology) staff, pure versus applied research, informal and personal sources of information, and traditional library and information services. It goes on to describe how research into information systems and technology may improve the wider accessibility and use of information to the scientific community. Technologies covered include online databases, telecommunications, gateways, expert systems, optical technology and applications of CDROM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Science Cafes present a casual meeting place where people who may have little or no science background can learn about a current scientific topic in an informal and friendly environment. The coffee shop setting is designed to be inviting and informal so that students, faculty, and community members can feel comfortable and engage in lively and meaningful conversations. The café is organized around an interesting scientific topic with a brief presentation by a scientist and may include a short video clip. A Science Café can (1) provide an opportunity and venue for increasing science literacy, (2) publicize local scientific endeavors, and (3) identify the library as an epicenter of informal education on the campus and in the community. This presentation will describe the development of the Science Café at the University of Southern Mississippi Gulf Coast campus Library in Long Beach and plans for future cafes on the Mississippi coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first concept of a new library was introduced in 2001 by a faculty member at the University of Texas Marine Science Institute. The suggestion for the construction of a new library was based on two specific reasons: existing library is located in one of the most vulnerable buildings to hurricane damage and the library has outgrown its current space. This presentation provides a general overview of the current status and changing needs of the Marine Science Library and how the idea of a new library finally became a reality