956 resultados para SYNCHRONIZATION OF CHAOS
Resumo:
EEG Hyperscanning is a method for studying two or more individuals simultaneously with the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity) are influenced by their behavioral and social interactions. The aim of this study was to compare the performance of different hyper-connectivity measures using (i) simulated data, where the degree of coupling could be systematically manipulated, and (ii) individually recorded human EEG combined into pseudo-pairs of participants where no hyper-connections could exist. With simulated data we found that each of the most widely used measures of hyperconnectivity were biased and detected hyper-connections where none existed. With pseudo-pairs of human data we found spurious hyper-connections that arose because there were genuine similarities between the EEG recorded from different people independently but under the same experimental conditions. Specifically, there were systematic differences between experimental conditions in terms of the rhythmicity of the EEG that were common across participants. As any imbalance between experimental conditions in terms of stimulus presentation or movement may affect the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts. Furthermore, as these spurious hyper-connections reflected real similarities between the EEGs, they were not Type-1 errors that could be overcome by some appropriate statistical control. However, some measures that have not previously been used in hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less susceptible to detecting spurious hyper-connections of this type. The reason for this advantage in performance is discussed and the use of the CCorr as an alternative measure of hyperconnectivity is advocated. © 2013 Burgess.
Resumo:
Everyday human behaviour relies on our ability to predict outcomes on the basis of moment by moment information. Long-range neural phase synchronization has been hypothesized as a mechanism by which ‘predictions’ can exert an effect on the processing of incoming sensory events. Using magnetoencephalography (MEG) we have studied the relationship between the modulation of phase synchronization in a cerebral network of areas involved in visual target processing and the predictability of target occurrence. Our results reveal a striking increase in the modulation of phase synchronization associated with an increased probability of target occurrence. These observations are consistent with the hypothesis that long-range phase synchronization plays a critical functional role in humans' ability to effectively employ predictive heuristics.
Resumo:
The human mirror neuron system (MNS) has recently been a major topic of research in cognitive neuroscience. As a very basic reflection of the MNS, human observers are faster at imitating a biological as compared with a non-biological movement. However, it is unclear which cortical areas and their interactions (synchronization) are responsible for this behavioural advantage. We investigated the time course of long-range synchronization within cortical networks during an imitation task in 10 healthy participants by means of whole-head magnetoencephalography (MEG). Extending previous work, we conclude that left ventrolateral premotor, bilateral temporal and parietal areas mediate the observed behavioural advantage of biological movements in close interaction with the basal ganglia and other motor areas (cerebellum, sensorimotor cortex). Besides left ventrolateral premotor cortex, we identified the right temporal pole and the posterior parietal cortex as important junctions for the integration of information from different sources in imitation tasks that are controlled for movement (biological vs. non-biological) and that involve a certain amount of spatial orienting of attention. Finally, we also found the basal ganglia to participate at an early stage in the processing of biological movement, possibly by selecting suitable motor programs that match the stimulus.
Resumo:
The work was supported in part by the NSFC (60804040 and 61172070), the Key Basic Research Fund of Shaanxi Province (2016ZDJC-01), the Innovation Research Team of Shaanxi Province (2013KCT-04), the Fok Ying Tong Education Foundation (Grant No. 111065), the Collaborative innovation program of Xi’an city (CXY1509-19), and the EPSRC (EP/I032606/1). Chao Bai was supported by Excellent Ph.D. research fund from XAUT.
Resumo:
A 21.6 Gbit/s 1.78 bit/s/Hz OFDM signal is transmitted over 50 Km of fiber without using DSP in the transmitter or the receiver. The synchronization scheme only requires one PLL to synchronize all the subcarriers.
Resumo:
In this article we present a numerical study of the collective dynamics in a population of coupled semiconductor lasers with a saturable absorber, operating in the excitable regime under the action of additive noise. We demonstrate that temporal and intensity synchronization takes place in a broad region of the parameter space and for various array sizes. The synchronization is robust and occurs even for a set of nonidentical coupled lasers. The cooperative nature of the system results in a self-organization process which enhances the coherence of the single element of the population too and can have broad impact for detection purposes, for building all-optical simulators of neural networks and in the field of photonics-based computation.
Resumo:
We calculate near-threshold bound states and Feshbach resonance positions for atom–rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J=0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J>0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J=0) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.
Resumo:
We study the chaos decomposition of self-intersection local times and their regularization, with a particular view towards Varadhan's renormalization for the planar Edwards model.
Resumo:
Druj Aeterni is a large chamber ensemble piece for flute, clarinet, French horn, two trumpets, piano, two percussionists, string quintet, and electric bass. My composition integrates three intellectual pursuits and interests, ancient mythology, cosmology, and mathematics. The title of the piece uses Latin and the language of the Avesta, the holy book of Zoroastrianism, and comments upon a philosophical perspective based in string theory. I abstract the cosmological implications of string theory, apply them to the terminology and theology of Zoroastrianism, and then structure the composition in consideration of a possible reconciliation. The analysis that follows incorporates analytical techniques similar to David Cope’s style of Vectoral Analysis.
Resumo:
We consider a general coupling of two chaotic dynamical systems and we obtain conditions that provide delayed synchronization. We consider four different couplings that satisfy those conditions. We define Window of Delayed Synchronization and we obtain it analytically. We use four different free chaotic dynamics in order to observe numerically the analytically predicted windows for the considered couplings.
Resumo:
Chronic telogen effluvium (CTE), a poorly understood condition, can be confused with or may be a prodrome to female pattern hair loss (FPHL). The pathogenesis of both is related to follicle cycle shortening and possibly to blood supply changes. To analyze a number of histomorphometric and immunohistochemical findings through vascular endothelial growth factor (VEGF), Ki-67, and CD31 immunostaining in scalp biopsies of 20 patients with CTE, 17 patients with mild FPHL and 9 controls. Ki-67 index and VEGF optical density were analyzed at the follicular outer sheath using ImageJ software. CD31 microvessel density was assessed by a Chalkley grid. Significant follicle miniaturization and higher density of nonanagen follicles were found in FPHL, compared with patients with CTE and controls. Ki-67+ index correlated positively with FPHL histological features. The FPHL group showed the highest VEGF optical density, followed by the CTE and control groups. No differences were found in CD31 microvessel density between the three groups. Histomorphometric results establish CTE as a distinct disorder, separate from FPHL from its outset. Its pathogenic mechanisms are also distinct. These findings support the proposed mechanism of 'immediate telogen release' for CTE, leading to cycle synchronization. For FPHL, accelerated anagen follicular mitotic rates and, thus, higher Ki-67 and VEGF values, would leave less time for differentiation, resulting in hair miniaturization.
Resumo:
Networks of Kuramoto oscillators with a positive correlation between the oscillators frequencies and the degree of their corresponding vertices exhibit so-called explosive synchronization behavior, which is now under intensive investigation. Here we study and discuss explosive synchronization in a situation that has not yet been considered, namely when only a part, typically a small part, of the vertices is subjected to a degree-frequency correlation. Our results show that in order to have explosive synchronization, it suffices to have degree-frequency correlations only for the hubs, the vertices with the highest degrees. Moreover, we show that a partial degree-frequency correlation does not only promotes but also allows explosive synchronization to happen in networks for which a full degree-frequency correlation would not allow it. We perform a mean-field analysis and our conclusions were corroborated by exhaustive numerical experiments for synthetic networks and also for the undirected and unweighed version of a typical benchmark biological network, namely the neural network of the worm Caenorhabditis elegans. The latter is an explicit example where partial degree-frequency correlation leads to explosive synchronization with hysteresis, in contrast with the fully correlated case, for which no explosive synchronization is observed.
Resumo:
The objective of the present study was to evaluate the effects of light and temperature on germination of Cereus pernambucensis seeds, a species of columnar cactus native to Brazil and naturally incident in the restinga. Cereus pernambucensis seeds were incubated under different temperatures, from 5 to 45 °C, with 5 °C intervals, and under alternating temperatures of 15-20 °C, 15-30 °C, 20-25 °C, 20-30 °C, 20-35 °C, 25-30 °C, 25-35 °C, and 30-35 °C, both under continuous white light and dark. The seeds were also incubated in a gradient of phytochrome photoequilibrium at 25 °C. The highest percentage germination in this species was between 25 and 30 °C. The minimum temperature was between 15 and 20 °C and the maximum between 35 and 40 °C. Alternating temperatures did not affect the percentage of seed germination, but it did alter the rate and synchronization indexes. Seeds incubated in the dark did not germinate under any of the conditions tested, indicating that this species when cultivated present light sensitive seeds controlled by phytochrome. The seeds can tolerate a lot of shade conditions, germinating under very low fluence response of phytochrome.