968 resultados para STEAM
Resumo:
In 1750 the lower Medway Valley, the area between the towns of Maidstone and Rochester, was firmly part of Kent's 'Garden of England'. A century later, this tranquil, agrarian landscape had been transformed into a hive of industry and commerce, through the emergence of papermaking, cement manufacture, brickmaking, brewing, ship and barge building, seed crushing and engineering. The lower Medway Valley became synonymous with the production of Portland cement, stock bricks and the steam engines of Aveling and Porter, yet, by the end of the Second World War, much of this industry was gone. "The Medway Valley: A Kent Landscape Transformed", the first Victoria County History publication in Kent for over 75 years, charts this cyclical story of landscape change. It explores how the quiet, rural landscape of a collection of eight riverside parishes around Rochester was dramatically transformed during industrialization, before returning to its formal rural state. This volume traces the impact of industrial development and decline on the valley and its people. It details changing patterns of work and society, the creation of new settlements and the pivotal role of the river in all aspects of village life reflecting two centuries of change and upheaval.
Resumo:
Part 1 covers the North Sea fisheries, a voyage on a steam trawler, an outline of the rise of trawling in the North Sea and the introduction of trawling at a northern fishing station and its influence on the fishery.
Resumo:
The comparison of three ionic liquid-mediated catalytic processes for the benzoylation of anisole with benzoic anhydride is presented. A detailed understanding of the mechanism by which the zeolite and metal triflate reactions in bis{trifluoromethanesulfonyl}imide-based ionic liquids has been reported previously, and these routes are considered together with an indium chloride-based ionic liquid system. Solvent extraction and vacuum/steam distillation have been assessed as possible workup procedures, and an overall preliminary economic evaluation of each overall process is reported. Although the predominant activity is associated with the in situ formation of a homogeneous acid catalyst, the low cost and facile separation of the zeolite-catalysed process leads to this route being the most economically viable overall option. The results of a continuous flow miniplant based on the zeolite catalyst are also presented and compared with the reaction using a small plug How reactor.
Resumo:
The kinetics of the water-gas shift reaction Were Studied on a 0.2% Pt/CeO2 catalyst between 177 and 300 degrees C over a range of CO and steam pressures. A rate decrease with increasing partial pressure of CO was experimentally observed over this sample, confirming that a negative order in CO can occur under certain conditions at low temperatures. The apparent reaction order of CO measured at 197 degrees C was about -0.27. This value is significantly larger than that (i.e, -0.03) reported by Ribeiro and co-workers [A.A. Phatak, N. Koryabkina, S. Rai, J.L. Ratts, W. Ruettinger, R.J. Farrauto, G.E. Blau, W.N. Delgass, F.H. Ribeiro, Catal. Today 123 (2007) 224] at a similar temperature. A kinetic peculiarity was also evidenced, i.e. a maximum of the reaction rate as a function of the CO concentration or possibly a kinetic break, which is sometimes observed in the oxidation of simple molecules. These observations support the idea that competitive adsorption of CO and H2O play an essential role in the reaction mechanism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this research is to compare the adsorption capacity of different types of activated carbons produced by steam activation in small laboratory scale and large industrial scale processes. Equilibrium behaviour of the activated carbons was investigated by performing batch adsorption experiments using bottle-point method. Basic dyes (methylene blue (MB), basic red (BR) and basic yellow (BY)) were used as adsorbates and the maximum adsorptive capacity was determined. Adsorption isotherm models, Langmuir, Freundlich and Redlich-Peterson were used to simulate the equilibrium data at different experimental parameters (pH and adsorbent particle size). It was found that PAC2 (activated carbon produced from New Zealand coal using steam activation) has the highest adsorptive capacity towards MB dye (588 mg/g) followed by F400 (476 mg/g) and PAC 1 (380 mg/g). BR and BY showed higher adsorptive affinity towards PAC2 and F400 than MB. Under comparable conditions, adsorption capacity of basic dyes, MB, BR and BY onto PAC 1, PAC2 and F400 increased in the order: MB <BR <BY. Redlich-Peterson model was found to describe the experimental data over the entire range of concentration under investigation. All the systems show favourable adsorption of the basic dyes with 0 <R-L <I (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The central theme of this investigation is to evaluate the feasibility of using bituminous coal as a precursor material for the production of chars and activated carbons using physical and chemical activation processes. The chemical activation process was accomplished by impregnating the raw materials with different dehydrating agents in different ratios and concentrations, prior to heat treatment (ZnCl2, KCl, KOH, NaOH and Fe2(SO4)3·xH2O). Steam activation of the precursor material was adopted for the preparation of activated carbon using physical activation technology. Different types of bituminous coal; namely, contaminated Columbian (contaminated with pet. coke), pure Columbian, Venezuelan and New Zealand bituminous coal were used in the production processes. BET surface area, micropore area, pore size distribution and total pore volume of the chars and activated carbons were determined from N2 adsorption/desorption isotherm, measured at 77 K. Charring conditions, charring temperature of 800 °C and charring time of 4 h, proved to be the optimum conditions for preparing chars. Contaminated Columbian were found to be the best precursor material for the production of char with reasonable physical characteristics (surface area = 138.1 m2 g-1 and total pore volume of 8.656 × 10-0.2 cm3 g-1). An improvement in the physical characteristics of the activated carbons was obtained upon the treatment of coal with dehydrating agents. Contaminated Columbian treated with 10 wt% ZnCl2 displayed the highest surface area and total pore volume (surface area = 231.5 m2 g-1 and total pore volume = 0.1227 cm3 g-1) with well-developed microporisity (micropore area = 92.3 m2 g-1). Venezuelan bituminous coal using the steam activation process was successful in producing activated carbon with superior physical characteristics (surface area = 863.50 m2 g-1, total pore volume = 0.469 cm3 g-1 and micropore surface area = 783.58 m2 g-1).
Resumo:
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m-3 day-1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg-1 COD.
Resumo:
A series of iron containing zeolites with varying Si/Al ratios (11.5-140) and low iron content (similar to 0.9 wt.% Fe) have been synthesised by solid-state ion exchange with commercially available zeolites and tested, for the first time, in the oxidative dehydrogenation of propane (ODHP) with N2O. The samples were characterised by XRD, N-2-Adsorption, NH3-TPD and DR-UV-vis spectroscopy. The acidity of the Fe-ZSM-5 can be controlled by high temperature and steam treatments and Si/Al ratio. The selectivity and yield of propene were found to be the highest over Fe-ZSM-5 with low Al contents and reduced acidity. The initial propene yield over Fe-ZSM-5 was significantly higher than that of Fe-SiO2 since the presence of weak and/or medium acid sites together with oligonuclear iron species and iron oxides on the ZSM-5 are found to enhance the N2O activation. The coking of Fe-ZSM-5 catalysts could also be controlled by reduction of the surface acidity of ZSM-5 and by the use of O-2 in addition to N2O as the oxidant. Fe-ZSM-5 zeolites prepared with solid-state method have been shown to have comparable activity and better stability towards coking compared with Fe-ZSM-5 zeolites prepared by liquid ion exchange and hydrothermal synthesis methods. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
High temperature co-electrolysis of steam and carbon dioxide using a solid oxide cell (SOC) has been shown to be an efficient route to produce syngas (CO + H-2), which can then be converted to synthetic fuel. Optimization of co-electrolysis requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the SOC during operation. Thermal imaging, Raman spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy are being developed to probe in-situ both the reactions occurring during operation and any associated changes within the structure of the electrodes and electrolyte. Here we discuss the challenges in designing experimental apparatus suitable for high temperature operation with optical spectroscopic access to the areas of the SOC that are of interest. In particular, issues with sealing, temperature gradients, signal strength and cell configuration are discussed and final designs are presented. Preliminary results obtained during co-electrolysis operation are also presented.
Resumo:
While the benefits of renewable energy are well known and used to influence government policy there are a number of problems which arise from having significant quantities of renewable energies on an electricity grid. The most notable problem stems from their intermittent nature which is often out of phase with the demands of the end users. This requires the development of either efficient energy storage systems, e.g. battery technology, compressed air storage etc. or through the creation of demand side management units which can utilise power quickly for manufacturing operations. Herein a system performing the conversion of synthetic biogas to synthesis gas using wind power and an induction heating system is shown. This approach demonstrates the feasibility of such techniques for stabilising the electricity grid while also providing a robust means of energy storage. This exemplar is also applicable to the production of hydrogen from the steam reforming of natural gas.
Resumo:
A low temperature, isothermal, gas-phase, recyclable process is described for the partial oxidation of methane to methanol over Cu–ZSM-5. Activation in NO at 150 °C followed by methane reaction and steam extraction (both at 150 °C) allowed direct observation of methanol at the reactor outlet.
Resumo:
Many parts of the UK’s rail network were constructed in the mid-19th century long before the advent of modern construction standards. Historic levels of low investment, poor maintenance strategies and the deleterious effects of climate change have resulted in critical elements of the rail network being at significant risk of failure. The majority of failures which have occurred over recent years have been triggered by extreme weather events. Advance assessment and remediation of earthworks is, however, significantly less costly than dealing with failures reactively. It is therefore crucial that appropriate approaches for assessment of the stability of earthworks are developed, so that repair work can be better targeted and failures avoided wherever possible. This extended abstract briefly discusses some preliminary results from an ongoing geophysical research project being carried out in order to study the impact of climate or seasonal weather variations on the stability of a century old railway embankment on the Gloucestershire Warwickshire steam railway line in Southern England.
Resumo:
Biomass pyrolysis is an efficient way to transform raw biomass or organic waste materials into useable energy, including liquid, solid, and gaseous materials. Levoglucosan (1,6-anhydro-β-d-glucopyranose) and formaldehyde are two important products in biomass pyrolysis. The formation mechanism of these two products was investigated using the density functional theory (DFT) method based on quantum mechanics. It was found that active anhydroglucose can be obtained from a cellulose homolytic reaction during high-temperature steam gasification of the biomass process. Anhydroglucose undergoes a hydrogen-donor reaction and forms an intermediate, which can transform into the products via three pathways, one (path 1) for the formation of levoglucosan and two (paths 2 and 3) for formaldehyde. A total of six elementary reactions are involved. At a pressure of 1 atm, levoglucosan can be formed at all of the temperatures (450-750 K) considered in this simulation, whereas formaldehyde can be formed only when the temperature is higher than 475 K. Moreover, the energy barrier of levoglucosan formation is lower than that of formaldehyde, which is in agreement with the mechanism proposed in the experiments. © 2011 American Chemical Society.
Resumo:
Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450[degree]C to 600[degree]C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction and carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent.
Resumo:
Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.