910 resultados para STAUROSPORINE-INDUCED APOPTOSIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB) expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF), which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB) in-vivo.; and hence it is not effectivein-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP) based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Gemcitabine is a nucleoside pyrimidine analog that has long been the backbone of chemotherapy for PDAC, both as a single agent, and more recently, in combination with nab-paclitaxel. Since gemcitabine is hydrophilic, it must be transported through the hydrophobic cell membrane by transmembrane nucleoside transporters. Human equilibrative nucleoside transporter-1 (hENT1) and human concentrative nucleoside transporter-3 (hCNT3) both have important roles in the cellular uptake of the nucleoside analog gemcitabine. While low expression of hENT1 and hCNT3 has been linked to gemcitabine resistance clinically, mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. We identified that the matricellular protein Cysteine-Rich Angiogenic Inducer 61 (CYR61) negatively regulates expression of hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 significantly increased expression of hENT1 and hCNT3 and cellular uptake of gemcitabine. CRSIPR-mediated knockout of CYR61 sensitized PDAC cells to gemcitabine-induced apoptosis. Conversely, adenovirus-mediated overexpression of CYR61 decreased hENT1 expression and reduced gemcitabine-induced apoptosis. We demonstrate that CYR61 is expressed primarily by stromal pancreatic stellate cells (PSCs) within the PDAC tumor microenvironment, with Transforming Growth Factor- β (TGF-β) inducing the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in an in vitro co-culture assay with PDAC cells. Our results identify CYR61 as a TGF-β induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During oncogenesis, cancer cells go through metabolic reprogramming to maintain their high growth rates and adapt to changes in the microenvironment and the lack of essential nutrients. Several types of cancer are dependent on de novo fatty acid synthesis to sustain their growth rates by providing precursors to construct membranes and produce vital signaling lipids. Fatty acid synthase (FASN) catalyze the terminal step of de novo fatty acid synthesis and it is highly expressed in many types of cancers where it’s up-regulation is correlated with cancer aggressiveness and low therapeutic outcome. Many FASN inhibitors were developed and showed potent anticancer activity however, only one inhibitor advanced to early stage clinical trials with some dose limiting toxicities. Using a modified fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen, we identified HS-106, a thiophenopyrimiden FASN inhibitor that has anti-neoplastic activity against breast cancer in vitro and in vivo. HS-106 was able to inhibit both; purified human FASN activity and cellular fatty acid synthesis activity as evaluated by radioactive tracers incorporation into lipids experiments. In proliferation and apoptosis assays, HS-106 was able to block proliferation and induce apoptosis in several breast cancer cell lines. Several rescue experiment and global lipidome analysis were performed to probe the mechanism by which HS-106 induces apoptosis. HS-106 was found to induce several changes in lipids metabolism: (i) inhibit fatty acids synthesis. (ii) Inhibit fatty acids oxidation as indicated by the ability of inhibiting Malonyl CoA accumulation to block HS-106 induced apoptosis and the increase in the abundance of ceramides. (iii) Increase fatty acids uptake and neutral lipids formation as confirmed 14C Palmitate uptake assay and neutral lipids staining. (iv)Inhibit the formation of phospholipids by inhibiting de novo fatty acid synthesis and diverting exogenous fatty acids to neutral lipids. All of these events would lead to disruption in membranes structure and function. HS-106 was also tested in Lapatinib resistant cell lines and it was able to induce apoptosis and synergizes Lapatinib activity in these cell lines. This may be due the disruption of lipid rafts based on the observation that HS-106 reduces the expression of both HER2 and HER3. HS-106 was found to be well tolerated and bioavailable in mice with high elimination rate. HS-106 efficacy was tested in MMTV neu mouse model. Although did not significantly reduced tumor size (alone), HS-106 was able to double the median survival of the mice and showed potent antitumor activity when combined with Carboplatin. Similar results were obtained when same combinations and dosing schedule was used in C3Tag mouse model except for the inability of HS-106 affect mice survival.

From the above, HS-106 represent a novel FASN inhibitor that has anticancer activity both in vivo and in vitro. Being a chemically tractable molecule, the synthetic route to HS-106 is readily adaptable for the preparation of analogs that are similar in structure, suggesting that, the pharmacological properties of HS-106 can be improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.

By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.

To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.

In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Breast cancer is the most frequently diagnosed cancer in women, accounting for over 25% of cancer diagnoses and 13% of cancer-related deaths in Canadian women. There are many types of therapies for treatment or management of breast cancer, with chemotherapy being one of the most widely used. Taxol (paclitaxel) is one of the most extensively used chemotherapeutic agents for treating cancers of the breast and numerous other sites. Taxol stabilizes microtubules during mitosis, causing the cell cycle to arrest until eventually the cell undergoes apoptosis. Although Taxol has had significant benefits in many patients, response rates range from only 25-69%, and over half of Taxol-treated patients eventually acquire resistance to the drug. Drug resistance remains one of the greatest barriers to effective cancer treatment, yet little has been discerned regarding resistance to Taxol, despite its widespread clinical use. Kinases are known to be heavily involved in cancer development and progression, and several kinases have been linked to resistance of Taxol and other chemotherapeutic agents. However, a systematic screen for kinases regulating Taxol resistance is lacking. Thus, in this study, a set of kinome-wide screens was conducted to interrogate the involvement of kinases in the Taxol response. Positive-selection and negative-selection CRISPR-Cas9 screens were conducted, whereby a pooled library of 5070 sgRNAs targeted 507 kinase-encoding genes in MCF-7 breast cancer cells that were Taxol-sensitive (WT) or Taxol-resistant (TxR) which were then treated with Taxol. Next generation sequencing (NGS) was performed on cells that survived Taxol treatment, allowing identification and quantitation of sgRNAs. STK38, Blk, FASTK and Nek3 stand out as potentially critical kinases for Taxol-induced apoptosis to occur. Furthermore, kinases CDKL1 and FRK may have a role in Taxol resistance. Further validation of these candidate kinases will provide novel pre-clinical data about potential predictive biomarkers or therapeutic targets for breast cancer patients in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé : La maladie osseuse de Paget (MP) est un désordre squelettique caractérisé par une augmentation focale et désorganisée du remodelage osseux. Les ostéoclastes (OCs) de MP sont plus larges, actifs et nombreux, en plus d’être résistants à l’apoptose. Même si la cause précise de la MP demeure inconnue, des mutations du gène SQSTM1, codant pour la protéine p62, ont été décrites dans une proportion importante de patients avec MP. Parmi ces mutations, la substitution P392L est la plus fréquente, et la surexpression de p62P392L dans les OCs génère un phénotype pagétique partiel. La protéine p62 est impliquée dans de multiples processus, allant du contrôle de la signalisation NF-κB à l’autophagie. Dans les OCs humains, un complexe multiprotéique composé de p62 et des kinases PKCζ et PDK1 est formé en réponse à une stimulation par Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL), principale cytokine impliquée dans la formation et l'activation des OCs. Nous avons démontré que PKCζ est impliquée dans l’activation de NF-κB induite par RANKL dans les OCs, et dans son activation constitutive en présence de p62P392L. Nous avons également observé une augmentation de phosphorylation de Ser536 de p65 par PKCζ, qui est indépendante d’IκB et qui pourrait représenter une voie alternative d'activation de NF-κB en présence de la mutation de p62. Nous avons démontré que les niveaux de phosphorylation des régulateurs de survie ERK et Akt sont augmentés dans les OCs MP, et réduits suite à l'inhibition de PDK1. La phosphorylation des substrats de mTOR, 4EBP1 et la protéine régulatrice Raptor, a été évaluée, et une augmentation des deux a été observée dans les OCs pagétiques, et est régulée par l'inhibition de PDK1. Également, l'augmentation des niveaux de base de LC3II (associée aux structures autophagiques) observée dans les OCs pagétiques a été associée à un défaut de dégradation des autophagosomes, indépendante de la mutation p62P392L. Il existe aussi une réduction de sensibilité à l’induction de l'autophagie dépendante de PDK1. De plus, l’inhibition de PDK1 induit l’apoptose autant dans les OCs contrôles que pagétiques, et mène à une réduction significative de la résorption osseuse. La signalisation PDK1/Akt pourrait donc représenter un point de contrôle important dans l’activation des OCs pagétiques. Ces résultats démontrent l’importance de plusieurs kinases associées à p62 dans la sur-activation des OCs pagétiques, dont la signalisation converge vers une augmentation de leur survie et de leur fonction de résorption, et affecte également le processus autophagique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50 degrees C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The B cell CLL/lymphoma-2 (Bcl-2) family is functionally classified as either anti-apoptotic or pro-apoptotic, and the regulation of its interactions dictates survival or commitment to apoptosis. Bcl-2 family is also implicated in a wide range of diseases. In some types of cancers, including lymphomas and epithelial cancers, protein overexpression of anti-apoptotic Bcl-2 family, such as the Bcl-2 protein is indicative of cancer in an advanced stage, with a poor prognosis and resistant to chemotherapy [1]. Several reports indicate that mushrooms have the ability to promote apoptosis in tumour cell lines, but the mechanism of action is not fully understood. Inhibition of the interaction between Bcl-2 (anti-apoptotic protein) and proapoptotic proteins could be an important step in the mechanism of mushroom induced apoptosis. Therefore, the discovery of compounds with the capacity to inhibit Bcl-2 is an ongoing research topic on cancer therapy. In this work, docking studies were performed using a dataset of 40 low molecular weight (LMW) compounds present in mushrooms. The docking software AutoDock 4 was used and docking studies were performed using 5 selected Bcl-2 crystal structures as targets. Compounds with the lowest predicted binding energy (predΔG) are expected to be the more potent inhibitors. Among the tested compounds, steroids presented the lowest predΔG with several exhibiting values below -9 kcal/mol. The results are corroborated by several reports that state that steroids induce apoptosis in several tumor cells. It is thus feasible that they might act by preventing Bcl-2 from forming complexes with the respective proapoptotic protein interaction partners, namely Bak, Bax, and Bim. Moreover, previous studies on our research group demonstrated that 48 h treatment of MCF-7 cells (breast carcinoma) with Suillus collinitus methanolic extract caused a decrease in Bcl-2, highlighting the antitumor potential of this mushroom species [2]. In conclusion, the process of apoptosis promoted by mushroom extracts may be related to the inhibition of Bcl-2 by the steroid derivatives herein studied. However, further studies are needed to confirm this hypothesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis focuses on biological activity of pyrrole-imidazole polyamides in vivo. The work presented includes experiments underlining sequence selectivity of these compounds in living cells and potential methods to improve it. A large fraction of this thesis is devoted to activity of Py-Im in murine models of cancer. We investigated the pharmacokinetics and biodistribution of two compounds – targeted to 5'-WGGWCW-3' and 5'-WTWCGW-3' sequences – and characterized their activity by measuring their effects on tumor growth, gene expression in vivo and in tissue culture, and their effects on physiology of tumors. The initial theoretical studies suggested that a large fraction of genomic sites are bound by Py-Im polyamides non-specifically and experimental data shows that the programmed binding sequence is not a sole determinant of the patterns of gene regulation. Despite the likely presence of non-specific effects of Py-Im polyamides in living cells, in vivo administration of Py-Im polyamides resulted in tolerable host toxicity and anti-tumor activity. Py-Im polyamide targeted to Estrogen Receptor Response Element showed downregulation of ER-driven gene expression in tumor cells, while the compound targeted to hypoxia response element reduced vascularization of tumors and their growth rate, induced apoptosis of cells in hypoxic areas and reduced expression of proangiogenic and prometastatic factors. Further studies, showed that polyamides distributed to many of the tested tissues and their FITC-conjugates showed nuclear uptake. The gene expression effects were also present in murine tissues, such as liver and kidneys, indicating a potential for use for Py-Im polyamides in non-cancerous diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TET2 is a tumor suppressor gene that has been implicated in the epigenetic regulation of gene expression. Inactivating TET2 mutations are common in MDS. These mutations may contribute to early clonal dominance and myeloid transformation, although the exact mechanisms remain to be elucidated. Common to the environment of MDS are elevations in cytokines, such as TNFα and IFN-γ. It was hypothesized that inflammatory cytokines TNF-α and IFN-γ may promote clonal expansion of TET2 mutant progenitors. Adult (10-14 weeks-old) Tet2 wild type (+/+) and Tet2 mutant (-/-) C57BL/6 mice strains were chosen as a model system. Lineage negative cells (Lin-), enriched for hematopoietic stem and progenitor cells, were isolated from Tet2 +/+ and -/- bone marrow and cultured in the absence or presence of varying concentrations of TNFα or IFN-γ in methylcellulose colony formation assays and long term cell culture assays, over a period of 12 and 30 days respectively, and their colony growth, cell count, immunophenotype and resistance to apoptosis were examined. Where indicated, serial re-plating was performed. Expression of apoptotic regulators was assessed by qRT-PCR. In the triplicate experiments, starting with equal densities of Tet2 +/+ and -/- Lin- cells, Tet2 -/- Lin- cells displayed increased resistance to cytokine-induced growth suppression and superior colony forming ability over +/+ in the serial re-plating assays under stress of increasing TNFα or IFN γ. Tet2 -/- progenitors also displayed a lower apoptotic index compared to +/+ under stress of increasing TNFα, suggesting increased resistance to TNFα induced apoptosis. Transcriptional data showed low expression of Tnfr1, Fas and caspase 8, as well as a high expression of Bcl-2 and Iap1 in Tet2 -/- compared to +/+ under stress of TNFα. Tet2-/- also showed increased basal expression of endogenous TNFα mRNA compared to +/+. In the human colony growth assay, the clonal growth of TET2 mutant CFU-GM progenitors was enhanced at low TNFα concentrations. Conclusion: Mutations that promote resistance to environmental stem cell stressors are a known mechanism of clonal selection in aplastic anaemia and JAK2-mutant MPN and our findings suggest that this mechanism may be critical to clonal selection and dominance in MDS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Problem: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. ----- ----- Method of study: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. ----- ----- Results: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. ----- ----- Conclusion: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure.