900 resultados para STAT ACTIVATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proto-oncogenic Ras isoforms (H, N, and K) have a C-terminal CAAX motif and undergo the same post-translational processing steps, although they traffic to the plasma membrane through different routes. Previously, we have shown that overexpression of the deubiquitinating enzyme USP17 inhibits H-Ras localization to the plasma membrane. Now we report that whereas H-Ras and N-Ras were unable to localize to the plasma membrane in the presence of USP17, K-Ras4b localization was unaffected. EGF stimulation was unable to induce N-Ras membrane localization in USP17-expressing cells. In addition, N-Ras activity and downstream signaling through the MAPK MEK/ERK and PI3K/JNK pathways were blunted. However, we still detected abundant N-Ras localization at the ER and Golgi in USP17-expressing cells. Collectively, our data showed that the deubiquitinating enzyme USP17 blocks EGF-induced N-Ras membrane trafficking and activation, but left K-Ras unaffected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE
To investigate changes in gene expression during aging of the retina in the mouse.

METHODS
Total RNA was extracted from the neuroretina of young (3-month-old) and old (20-month-old) mice and processed for microarray analysis. Age-related, differentially expressed genes were assessed by the empiric Bayes shrinkagemoderated t-statistics method. Statistical significance was based on dual criteria of a ratio of change in gene expression >2 and a P < 0.01. Differential expression in 11 selected genes was further verified by real-time PCR. Functional pathways involved in retinal ageing were analyzed by an online software package (DAVID-2008) in differentially expressed gene lists. Age-related changes in differential expression in the identified retinal molecular pathways were further confirmed by immunohistochemical staining of retinal flat mounts and retinal cryosections.

RESULTS
With ageing of the retina, 298 genes were upregulated and 137 genes were downregulated. Functional annotation showed that genes linked to immune responses (Ir genes) and to tissue stress/injury responses (TS/I genes) were most likely to be modified by ageing. The Ir genes affected included those regulating leukocyte activation, chemotaxis, endocytosis, complement activation, phagocytosis, and myeloid cell differentiation, most of which were upregulated, with only a few downregulated. Increased microglial and complement activation in the aging retina was further confirmed by confocal microscopy of retinal tissues. The most strongly upregulated gene was the calcitonin receptor (Calcr; >40-fold in old versus young mice).

CONCLUSIONS
The results suggest that retinal ageing is accompanied by activation of gene sets, which are involved in local inflammatory responses. A modified form of low-grade chronic inflammation (para-inflammation) characterizes these aging changes and involves mainly the innate immune system. The marked upregulation of Calcr in ageing mice most likely reflects this chronic inflammatory/stress response, since calcitonin is a known systemic biomarker of inflammation/sepsis. © Association for Research in Vision and Ophthalmology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims

Public health campaigns recommend increased fruit and vegetable (FV) consumption as an effective means of cardiovascular risk reduction. During an 8 week randomised control trial among hypertensive volunteers, we noted significant improvements in endothelium-dependent vasodilatation with increasing FV consumption. Circulating indices of inflammation, endothelial activation and insulin resistance are often employed as alternative surrogates for systemic arterial health. The responses of several such biomarkers to our previously described FV intervention are reported here.
Methods and results

Hypertensive volunteers were recruited from medical outpatient clinics. After a common 4 week run-in period during which FV consumption was limited to 1 portion per day, participants were randomised to 1, 3 or 6 portions daily for 8 weeks. Venous blood samples for biomarker analyses were collected during the pre and post-intervention vascular assessments. A total of 117 volunteers completed the 12 week study. Intervention-related changes in circulating levels of high sensitivity C-reactive protein (hsCRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1) did not differ significantly between FV groups. Similarly, there were no significant between group differences of change in homeostasis model assessment (HOMA) scores.
Conclusions

Despite mediating a significant improvement in acetylcholine induced vasodilatation, increased FV consumption did not affect a calculated measure of insulin resistance or concentrations of the circulating biomarkers measured during this study. Functional indices of arterial health such as endothelium-dependent vasomotion are likely to provide more informative cardiovascular end-points during short-term dietary intervention trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of a number of class A G protein-coupled receptors (GPCRs) is thought to involve two molecular switches, a rotamer toggle switch within the transmembrane domain and an ionic lock at the cytoplasmic surface of the receptor; however, the mechanism by which agonist binding changes these molecular interactions is not understood. Importantly, 80% of GPCRs including free fatty acid receptor 1 (FFAR1) lack the complement of amino acid residues implicated in either or both of these two switches; the mechanism of activation of these GPCRs is therefore less clear. By homology modeling, we identified two Glu residues (Glu-145 and Glu-172) in the second extracellular loop of FFAR1 that form putative interactions individually with two transmembrane Arg residues (Arg-183(5.39) and Arg-258(7.35)) to create two ionic locks. Molecular dynamics simulations showed that binding of agonists to FFAR1 leads to breakage of these Glu-Arg interactions. In mutagenesis experiments, breakage of these two putative interactions by substituting Ala for Glu-145 and Glu-172 caused constitutive receptor activation. Our results therefore reveal a molecular switch for receptor activation present on the extracellular surface of FFAR1 that is broken by agonist binding. Similar ionic locks between the transmembrane domains and the extracellular loops may constitute a mechanism common to other class A GPCRs also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CCK receptors represent potential targets in a number of diseases. Knowledge of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for their ligand recognition, partial agonism, ligand-induced trafficking of signalling. In the current paper, we report studies from our laboratory and others which have provided new data on the molecularbasis of the pharmacology and functioning of CCK1 and CCK2 receptors. It has been shown that: 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs in agreement with distinct phannacophores of CCK toward the two receptors and receptor sequence variations; 2) Binding sites of most of non-peptide agonists/ antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK; Aromatic amino acids within and near the binding site, especially in helix VI, are involved in receptor activation; 4) Like for other members of family A of G-protein coupled receptors, residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPR40 was formerly an orphan G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs). The receptor, now named FFA receptor 1, has been implicated in the pathophysiology of type 2 diabetes and is a drug target because of its role in FFA-mediated enhancement of glucose-stimulated insulin release. Guided by molecular modeling, we investigated the molecular determinants contributing to binding of linoleic acid, a C18 polyunsaturated FFA, and GW9508, a synthetic small molecule agonist. Twelve residues within the putative GPR40-binding pocket including hydrophilic/positively charged, aromatic, and hydrophobic residues were identified and were subjected to site-directed mutagenesis. Our results suggest that linoleic acid and GW9508 are anchored on their carboxylate groups by Arg183, Asn244, and Arg258. Moreover, His86, Tyr91, and His137 may contribute to aromatic and/or hydrophobic interactions with GW9508 that are not present, or relatively weak, with linoleic acid. The anchor residues, as well as the residues Tyr12, Tyr91, His137, and Leu186, appear to be important for receptor activation also. Interestingly, His137 and particularly His86 may interact with GW9508 in a manner dependent on its protonation status. The greater number of putative interactions between GPR40 and GW9508 compared with linoleic acid may explain the higher potency of GW9508.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation. A benign noninvasive rat mammary cell line, Rama 37, was used as a model system. Cell signaling and malignant cell behavior were compared between parental Rama 37 cells, which express few or no endogenous EpoRs, and a modified cell line stably transfected with human EpoR (Rama 37-28). The incubation of Rama 37-28 cells with pharmacologic levels of Epo led to the rapid and sustained increases in phosphorylation of signal transducers and activators of transcription 5, Akt, and extracellular signal-regulated kinase. The activation of these signaling pathways significantly increased invasion, migration, adhesion, and colony formation. The Epo-induced invasion capacity of Rama 37-28 cells was reduced by the small interfering RNA-mediated knockdown of EpoR mRNA levels and by inhibitors of the phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways with adhesion also reduced by Janus-activated kinase 2/signal transducers and activators of transcription 5 inhibition. These data show that Epo induces phenotypic changes in the behavior of breast cancer cell lines and establishes links between individual cell signaling pathways and the potential for cancer spread.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We have shown previously that exposure to anticancer drugs can trigger the activation of human epidermal receptor survival pathways in colorectal cancer (CRC). In this study, we examined the role of ADAMs (a disintegrin and metalloproteinases) and soluble growth factors in this acute drug resistance mechanism.

Experimental Design: In vitro and in vivo models of CRC were assessed. ADAM-17 activity was measured using a fluorometric assay. Ligand shedding was assessed by ELISA or Western blotting. Apoptosis was assessed by flow cytometry and Western blotting.

Results: Chemotherapy (5-fluorouracil) treatment resulted in acute increases in transforming growth factor-a, amphiregulin, and heregulin ligand shedding in vitro and in vivo that correlated with significantly increased ADAM-17 activity. Small interfering RNA–mediated silencing and pharmacologic inhibition confirmed that ADAM-17 was the principal ADAM involved in this prosurvival response. Furthermore, overexpression of ADAM-17 significantly decreased the effect of chemotherapy on tumor growth and apoptosis. Mechanistically, we found that ADAM-17 not only regulated phosphorylation of human epidermal receptors but also increased the activity of a number of other growth factor receptors, such as insulin-like growth factor-I receptor and vascular endothelial growth factor receptor.

Conclusions: Chemotherapy acutely activates ADAM-17, which results in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. Thus, pharmacologic inhibition of ADAM-17 in conjunction with chemotherapy may have therapeutic potential for the treatment of CRC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ideal cancer chemotherapeutic prodrug is completely inactive until metabolized by a tumour-specific enzyme, or by an enzyme that is only metabolically competent towards the prodrug under physiological conditions unique to the tumour. Human cancers, including colon, breast, lung, liver, kidney and prostate, are known to express cytochrome P450 (CYP) isoforms including 3A and 1A subfamily members. This raises the possibility that tumour CYP isoforms could be a focus for tumour-specific prodrug activation. Several approaches are reviewed, including identification of prodrugs activated by tumour-specific polymorphic CYPs, use of CYP-gene directed enzyme prodrug therapy and CYPs acting as reductases in hypoxic tumour regions. The last approach is best exemplified by AQ4N, a chemotherapeutic prodrug that is bioreductively activated by CYP3A. This study shows that freshly isolated murine T50/80 mammary carcinoma and RIF-1 fibrosarcoma 4-electron reduces AQ4N to its cytotoxic metabolite, AQ4 (T50/80 K-m = 26.7 mu M, V-max = 0.43 mu M/mg protein/min; RIF-1 K-m = 33.5 mu M, V-max = 0.42 mu M/mg protein/min) via AQM, a mono-N-oxide intermediate (T50/80 K-m = 37.5 mu M; V-max = 1.4 mu M/mg protein/min; RIF-1 K-m = 37.5 mu M; V-max = 1.2 mu M/mg protein/min). The prodrug conversion was dependent on NADPH and inhibited by air or carbon monoxide. Cyp3A mRNA and protein were both present in T50/80 carcinoma grown in vivo (RIF-1 not measured). Exposure of isolated tumour cells to anoxia (2 h) immediately after tumour excision increased cyp3A protein 2-3-fold over a 12 h period, after which time the cyp protein levels returned to the level found under aerobic conditions. Conversely, cyp3A mRNA expression showed an initial 3-fold decrease under both oxic and anoxic conditions; this returned to near basal levels after 8-24 h. These results suggest that cyp3A protein is stabilized in the absence of air, despite a decrease in cyp3A mRNA. Such a 'stabilization factor' may decrease cyp3A protein turnover without affecting the translation efficiency of cyp3A mRNA. Confirmation of the CYP activation of AQ4N bioreduction was shown with human lymphoblastoid cell microsomes transfected with CYP3A4, but not those transfected with CYP2B6 or cytochrome P450 reductase. AQ4N is also reduced to AQ4 in NADPH-fortified human renal cell carcinoma (K-m = 4 mu M, V-max = 3.5 pmol/mg protein/min) and normal kidney (K-m = 4 mu M, V-max = 4.0 pmol/mg protein/min), both previously shown to express CYP3A. Germane to the clinical potential of AQ4N is that although both normal and tumour cells are capable of reducing AQ4N to its cytotoxic species, the process requires low oxygen conditions. Hence, AQ4N metabolism should be restricted to hypoxic tumour cells. The isoform selectivity of AQ4N reduction, in addition to its air sensitivity, indicates that AQ4N haem coordination and subsequent oxygen atom transfer from the active-site-bound AQ4N is the likely mechanism of N-oxide reduction. The apparent increase in CYP3A expression under hypoxia makes this a particularly interesting application of CYPs for tumour-specific prodrug activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Keloid scars are common benign fibroproliferative reticular dermal lesions with unknown etiology and ill-defined management with high rate of recurrence post surgery. The progression of keloids is characterized by increased deposition of extracellular matrix proteins, invasion into the surrounding healthy skin and inflammation. Fibroblasts are considered to be the key cellular mediators of fibrogenesis in keloid scars. Fibroblast activation protein alpha (FAP-a) and dipeptidyl peptidase IV (DPPIV) are proteases located at the plasma membrane promoting cell invasiveness and tumor growth and have been previously associated with keloid scars. Therefore, in this study we analyzed in further detail the expression of FAP-a in keloid fibroblasts compared to control skin fibroblasts. Dermal fibroblasts were obtained from punch-biopsies from the active margin of four keloids and four control skin samples. Flow cytometry was used to analyze FAP-a expression and the CytoSelect(®) 24-Well Collagen I Cell Invasion Assay was applied to study fibroblast invasion. Secretion of extracellular matrix (ECM) proteins was investigated by multiplexed particle-based flow cytometric assay and enzyme-linked immunosorbent assay. We found an increased expression of FAP-a in keloid fibroblasts compared to control skin fibroblasts (p