977 resultados para SPONTANEOUS POLARIZATION
Resumo:
In recent years, geophysical methods have been shown to be sensitive to microbial-induced mineralization processes. The spectral induced-polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from biomineralization processes. More specifically, the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring and decision-making tool for sustainable remediation of metals in contaminated soils and groundwater.
Resumo:
A structure comprising a coupled pair of two-dimensional arrays of oblate plasmonic nanoellipsoids in a dielectric host medium is proposed as a superlens in the optical domain for both horizontal and vertical polarizations. By means of simulations it is demonstrated that a structure formed by silver nanoellipsoids is capable of restoring subwavelength features of the object for both polarizations at distances larger than half wavelength. The bandwidth of subwavelength resolution is in all cases very large (above 13%). (C) 2009 Optical Society of America
Resumo:
The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for r(s) similar to 20, then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at r(s) = 30. At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.
Resumo:
We discuss the effect of the attractive force associated with overlapping Debye spheres on the dispersion properties of the longitudinal and transverse dust lattice waves in strongly coupled dust crystals. The dust grain attraction is shown to contribute to a destabilization of the longitudinal dust lattice oscillations. The (optic-like) transverse mode dispersion law is shown to change. due to the Debye sphere dressing effect, from the known inverse-dispersive ("backward wave") form into a normal dispersive law (i.e. the group velocity changes sign). The stability of one-dimensionless bi-layers, consisting of (alternating) negatively and positively charged dust particles, is also discussed. The range of parameter values (mainly in terms of the lattice parameter kappa) where the above predictions are valid, are presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a
Resumo:
Structural defects in ion crystals can be formed during a linear quench of the transverse trapping frequency across the mechanical instability from a linear chain to a zigzag structure. The density of defects after the sweep can be conveniently described by the Kibble-Zurek mechanism (KZM). In particular, the number of kinks in the zigzag ordering can be derived from a time-dependent Ginzburg-Landau equation for the order parameter, here the zigzag transverse size, under the assumption that the ions are continuously laser cooled. In a linear Paul trap, the transition becomes inhomogeneous, since the charge density is larger in the center and more rarefied at the edges. During the linear quench, the mechanical instability is first crossed in the center of the chain, and a front, at which the mechanical instability is crossed during the quench, is identified that propagates along the chain from the center to the edges. If the velocity of this front is smaller than the sound velocity, the dynamics become adiabatic even in the thermodynamic limit and no defect is produced. Otherwise, the nucleation of kinks is reduced with respect to the case in which the charges are homogeneously distributed, leading to a new scaling of the density of kinks with the quenching rate. The analytical predictions are verified numerically by integrating the Langevin equations of motion of the ions, in the presence of a time-dependent transverse confinement. We argue that the non-equilibrium dynamics of an ion chain in a Paul trap constitutes an ideal scenario to test the inhomogeneous extension of the KZM, which lacks experimental evidence to date.
Resumo:
This communication investigates the potential for fabrication of micromachined silicon sub-millimeter wave periodic arrays of freestanding slot frequency selective surfaces (FSS) using wet etch KOH technology. The vehicle for this is an FSS for generating circularly polarized signals from an incident linearly polarized signal at normal incidence to the structure. Principal issues and fabrication processes involved from the initial design of the core FSS structures to be made and tested through to their final testing are addressed. Measured and simulated results for crossed and ring slot element shapes in single and double layer polarization convertor structures are presented for sub-mm wave operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one layer perforated screen design and that the rate of change is lower than the double layer structures. An insertion loss of 1.1 dB can be achieved for the split circular ring double layer periodic array. These results are shown to be compatible with the more specialized fabrication equipment dry reactive ion etching approach previously used for the construction of this type of structure. © 2011 IEEE.