947 resultados para SEASONAL VARIABILITY
Resumo:
Seasonal patterns have been found in a remarkable range of health conditions, including birth defects, respiratory infections and cardiovascular disease. Accurately estimating the size and timing of seasonal peaks in disease incidence is an aid to understanding the causes and possibly to developing interventions. With global warming increasing the intensity of seasonal weather patterns around the world, a review of the methods for estimating seasonal effects on health is timely. This is the first book on statistical methods for seasonal data written for a health audience. It describes methods for a range of outcomes (including continuous, count and binomial data) and demonstrates appropriate techniques for summarising and modelling these data. It has a practical focus and uses interesting examples to motivate and illustrate the methods. The statistical procedures and example data sets are available in an R package called ‘season’. Adrian Barnett is a senior research fellow at Queensland University of Technology, Australia. Annette Dobson is a Professor of Biostatistics at The University of Queensland, Australia. Both are experienced medical statisticians with a commitment to statistical education and have previously collaborated in research in the methodological developments and applications of biostatistics, especially to time series data. Among other projects, they worked together on revising the well-known textbook "An Introduction to Generalized Linear Models," third edition, Chapman Hall/CRC, 2008. In their new book they share their knowledge of statistical methods for examining seasonal patterns in health.
Resumo:
Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.
Resumo:
Generating accurate population-specific public health messages regarding sun protection requires knowledge about seasonal variation in sun exposure in different environments. To address this issue for a subtropical area of Australia, we used polysulphone badges to measure UVR for the township of Nambour (26° latitude) and personal UVR exposure among Nambour residents who were taking part in a skin cancer prevention trial. Badges were worn by participants for two winter and two summer days. The ambient UVR was approximately three times as high in summer as in winter. However, participants received more than twice the proportion of available UVR in winter as in summer (6.5%vs 2.7%, P < 0.05), resulting in an average ratio of summer to winter personal UVR exposure of 1.35. The average absolute difference in daily dose between summer and winter was only one-seventh of a minimal erythemal dose. Extrapolating from our data, we estimate that ca. 42% of the total exposure received in the 6 months of winter (June–August) and summer (December–February) is received during the three winter months. Our data show that in Queensland a substantial proportion of people’s annual UVR dose is obtained in winter, underscoring the need for dissemination of sun protection messages throughout the year in subtropical and tropical climates.
Resumo:
The potential to sequester atmospheric carbon in agricultural and forest soils to offset greenhouse gas emissions has generated interest in measuring changes in soil carbon resulting from changes in land management. However, inherent spatial variability of soil carbon limits the precision of measurement of changes in soil carbon and hence, the ability to detect changes. We analyzed variability of soil carbon by intensively sampling sites under different land management as a step toward developing efficient soil sampling designs. Sites were tilled crop-land and a mixed deciduous forest in Tennessee, and old-growth and second-growth coniferous forest in western Washington, USA. Six soil cores within each of three microplots were taken as an initial sample and an additional six cores were taken to simulate resampling. Soil C variability was greater in Washington than in Tennessee, and greater in less disturbed than in more disturbed sites. Using this protocol, our data suggest that differences on the order of 2.0 Mg C ha(-1) could be detected by collection and analysis of cores from at least five (tilled) or two (forest) microplots in Tennessee. More spatial variability in the forested sites in Washington increased the minimum detectable difference, but these systems, consisting of low C content sandy soil with irregularly distributed pockets of organic C in buried logs, are likely to rank among the most spatially heterogeneous of systems. Our results clearly indicate that consistent intramicroplot differences at all sites will enable detection of much more modest changes if the same microplots are resampled.
Resumo:
Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by climatic variables. However, few studies have examined the quantitative relationship between climate variation and HFRS transmission. ---------- Objective: We examined the potential impact of climate variability on HFRS transmission and developed climate-based forecasting models for HFRS in northeastern China. ---------- Methods: We obtained data on monthly counts of reported HFRS cases in Elunchun and Molidawahaner counties for 1997–2007 from the Inner Mongolia Center for Disease Control and Prevention and climate data from the Chinese Bureau of Meteorology. Cross-correlations assessed crude associations between climate variables, including rainfall, land surface temperature (LST), relative humidity (RH), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI) and monthly HFRS cases over a range of lags. We used time-series Poisson regression models to examine the independent contribution of climatic variables to HFRS transmission. ----------- Results: Cross-correlation analyses showed that rainfall, LST, RH, and MEI were significantly associated with monthly HFRS cases with lags of 3–5 months in both study areas. The results of Poisson regression indicated that after controlling for the autocorrelation, seasonality, and long-term trend, rainfall, LST, RH, and MEI with lags of 3–5 months were associated with HFRS in both study areas. The final model had good accuracy in forecasting the occurrence of HFRS. ---------- Conclusions: Climate variability plays a significant role in HFRS transmission in northeastern China. The model developed in this study has implications for HFRS control and prevention.
Resumo:
Bactrocera tryoni is a polyphagous fruit fly, originally endemic to tropical and subtropical coastal eastern Australia, but now also widely distributed in temperate eastern Australia. In temperate parts of its range, B. tryoni populations show distinct seasonal peaks driven by changing seasonal climates, especially changing temperature. In contrast to temperate areas, the seasonal phenology of B. tryoni in subtropical and tropical parts of its range is poorly documented and the role of climate unknown. Using a large, historical (1940s and 1950s) fruit fly trapping data set, we present the seasonal phenology of B. tryoni at nine sites across Queensland for multiple (two to seven) years per site. We correlate monthly trap data for each site with monthly weather averages (temperature, rainfall and relative humidity) to investigate climatic influences. We also correlate observed population data with predicted population data generated by an existing B. tryoni population model. Supporting predictions from climate driven models, B. tryoni did show year-round breeding at most Queensland sites. However, contrary to predictions, there was a common pattern of a significant population decline in autumn and winter, followed by a rapid population increase in August and then one or more distinct peaks of abundance in spring and summer. Mean monthly fly abundance was significantly different across sites, but was not correlated with altitudinal, latitudinal or longitudinal gradients. There were very few significant correlations between monthly fly population size and weather variables for eight of the nine sites. For the southern site of Gatton fly population abundance was correlated with temperature. Results suggest that while climate factors may be influencing B. tryoni populations in southern subtropical Queensland, they appear to be having only minor or no influence in northern sub-tropical and tropical Queensland. In the discussion we focus on the role of other factors, particularly larval host plant availability, as likely drivers of B. tryoni abundance in tropical and subtropical parts of its range.
Resumo:
The city of Scottsdale Arizona implemented the first fixed photo Speed Enforcement camera demonstration Program (SEP) on a US freeway in 2006. A comprehensive before-and-after analysis of the impact of the SEP on safety revealed significant reductions in crash frequency and severity, which indicates that the SEP is a promising countermeasure for improving safety. However, there is often a trade off between safety and mobility when safety investments are considered. As a result, identifying safety countermeasures that both improve safety and reduce Travel Time Variability (TTV) is a desirable goal for traffic safety engineers. This paper reports on the analysis of the mobility impacts of the SEP by simulating the traffic network with and without the SEP, calibrated to real world conditions. The simulation results show that the SEP decreased the TTV: the risk of unreliable travel was at least 23% higher in the ‘without SEP’ scenario than in the ‘with SEP’ scenario. In addition, the total Travel Time Savings (TTS) from the SEP was estimated to be at least ‘569 vehicle-hours/year.’ Consequently, the SEP is an efficient countermeasure not only for reducing crashes but also for improving mobility through TTS and reduced TTV.
Resumo:
Antipsychotic medications act as either antagonists or partial agonists of the dopamine D2 receptor (DRD2) and antipsychotic drugs vary widely in their binding affinity for the D2 receptor (Kapur and Seeman, 2000). The DRD2 957CNT (rs6277) polymorphism has previously been associated with schizophrenia (Lawford et al., 2005) and the T-allele of the 957CNT polymorphism is associated with reduced mRNA stability and synthesis of the dopamine D2 receptor (Duan et al., 2003). The aim of the study was to determine if the rs6277 polymorphism predicts some of the variability of positive and negative symptoms observed in schizophrenia patients being treated with antipsychotic medication.
Resumo:
The variability of input parameters is the most important source of overall model uncertainty. Therefore, an in-depth understanding of the variability is essential for uncertainty analysis of stormwater quality model outputs. This paper presents the outcomes of a research study which investigated the variability of pollutants build-up characteristics on road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary highly even within the same land use. Additionally, industrial land use showed relatively higher variability of maximum build-up, build-up rate and particle size distribution, whilst the commercial land use displayed a relatively higher variability of pollutant-solid ratio. Among the various build-up parameters analysed, D50 (volume-median-diameter) displayed the relatively highest variability for all three land uses.
Resumo:
The Queensland Department of Main Roads uses Weigh-in-Motion (WiM) devices to covertly monitor (at highway speed) axle mass, axle configurations and speed of heavy vehicles on the road network. Such data is critical for the planning and design of the road network. Some of the data appears excessively variable. The current work considers the nature, magnitude and possible causes of WiM data variability. Over fifty possible causes of variation in WiM data have been identified in the literature. Data exploration has highlighted five basic types of variability specifically: ----- • cycling, both diurnal and annual;----- • consistent but unreasonable data;----- • data jumps;----- • variations between data from opposite sides of the one road; and ----- • non-systematic variations.----- This work is part of wider research into procedures to eliminate or mitigate the influence of WiM data variability.
Resumo:
In fast bowling, cricketers are expected to produce a range of delivery lines and lengths while maximising ball speed. From a coaching perspective, technique consistency has been typically associated with superior performance in these areas. However, although bowlers are required to bowl consistently, at the elite level they must also be able to vary line, length and speed to adapt to opposition batters’ strengths and weaknesses. The relationship between technique and performance variability (and consistency) has not been investigated in previous fast bowling research. Consequently, the aim of this study was to quantify both technique (bowling action and coordination) and performance variability in elite fast bowlers from Australian Junior and National Pace Squads. Technique variability was analysed to investigate whether it could be classified as functional or dysfunctional in relation to speed and accuracy.