934 resultados para SEARCH-IMAGE-FORMATION
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
Texture analysis and textural cues have been applied for image classification, segmentation and pattern recognition. Dominant texture descriptors include directionality, coarseness, line-likeness etc. In this dissertation a class of textures known as particulate textures are defined, which are predominantly coarse or blob-like. The set of features that characterise particulate textures are different from those that characterise classical textures. These features are micro-texture, macro-texture, size, shape and compaction. Classical texture analysis techniques do not adequately capture particulate texture features. This gap is identified and new methods for analysing particulate textures are proposed. The levels of complexity in particulate textures are also presented ranging from the simplest images where blob-like particles are easily isolated from their back- ground to the more complex images where the particles and the background are not easily separable or the particles are occluded. Simple particulate images can be analysed for particle shapes and sizes. Complex particulate texture images, on the other hand, often permit only the estimation of particle dimensions. Real life applications of particulate textures are reviewed, including applications to sedimentology, granulometry and road surface texture analysis. A new framework for computation of particulate shape is proposed. A granulometric approach for particle size estimation based on edge detection is developed which can be adapted to the gray level of the images by varying its parameters. This study binds visual texture analysis and road surface macrotexture in a theoretical framework, thus making it possible to apply monocular imaging techniques to road surface texture analysis. Results from the application of the developed algorithm to road surface macro-texture, are compared with results based on Fourier spectra, the auto- correlation function and wavelet decomposition, indicating the superior performance of the proposed technique. The influence of image acquisition conditions such as illumination and camera angle on the results was systematically analysed. Experimental data was collected from over 5km of road in Brisbane and the estimated coarseness along the road was compared with laser profilometer measurements. Coefficient of determination R2 exceeding 0.9 was obtained when correlating the proposed imaging technique with the state of the art Sensor Measured Texture Depth (SMTD) obtained using laser profilometers.
Resumo:
Poly(styrene)-block-poly(ethylene oxide) copolymers synthesized via the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and hetero Diels–Alder (HDA) cycloaddition can be cleaved in the solid state by a retro-HDA reaction occurring at 90 °C. Nanoporous films can be prepared from these polymers using a simple heating and washing procedure.
Resumo:
Objective: Simvastatin has been shown to enhance osseointegration of pure titanium implants in osteoporotic rats. This study aimed to evaluate the relationship between the serum level of bone formation markers and the osseointegration of pure titanium implants in osteoporotic rats treated with simvastatin. Materials and methods: Fifty-four female Sprague Dawley rats, aged 3 months old, were randomly divided into three groups: Sham-operated group (SHAM; n=18), ovariectomized group (OVX; n=18), and ovariectomized with Simvastatin treatment group (OVX+SIM; n=18). Fifty-six days after ovariectomy, screw-shaped titanium implants were inserted into the tibiae. Simvastatin was administered orally at 5mg/kg each day after the placement of the implant in the OVX+SIM group. The animals were sacrificed at either 28 or 84 days after implantation and the undecalcified tissue sections were processed for histological analysis. Total alkaline phosphatase (ALP), bone specific alkaline phosphatase (BALP) and bone Gla protein (BGP) were measured in all animal sera collected at the time of euthanasia and correlated with the histological assessment of osseointegration. Results: The level of ALP in the OVX group was higher than the SHAM group at day 28, with no differences between the three groups at day 84. The level of BALP in the OVX+SIM group was significantly higher than both OVX and SHAM groups at days 28 and 84. Compared with day 28, the BALP level of all three groups showed a significant decrease at day 84. There were no significant differences in BGP levels between the three groups at day 28, but at day 84 the OVX+SIM group showed significantly higher levels than both the OVX and SHAM groups. There was a significant increase in BGP levels between days 28 and 84 in the OVX+SIM group. The serum bone marker levels correlated with the histological assessment showing reduced osseointegration in the OVX compared to the SHAM group which is subsequently reversed in the OVX+SIM group.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
We have developed digital image registration program for a MC 68000 based fundus image processing system (FIPS). FIPS not only is capable of executing typical image processing algorithms in spatial as well as Fourier domain, the execution time for many operations has been made much quicker by using a hybrid of "C", Fortran and MC6000 assembly languages.
Resumo:
This paper describes the feasibility of the application of an Imputer in a multiple choice answer sheet marking system based on image processing techniques.
Resumo:
As the use of Twitter has become more commonplace throughout many nations, its role in political discussion has also increased. This has been evident in contexts ranging from general political discussion through local, state, and national elections (such as in the 2010 Australian elections) to protests and other activist mobilisation (for example in the current uprisings in Tunisia, Egypt, and Yemen, as well as in the controversy around Wikileaks). Research into the use of Twitter in such political contexts has also developed rapidly, aided by substantial advancements in quantitative and qualitative methodologies for capturing, processing, analysing, and visualising Twitter updates by large groups of users. Recent work has especially highlighted the role of the Twitter hashtag – a short keyword, prefixed with the hash symbol ‘#’ – as a means of coordinating a distributed discussion between more or less large groups of users, who do not need to be connected through existing ‘follower’ networks. Twitter hashtags – such as ‘#ausvotes’ for the 2010 Australian elections, ‘#londonriots’ for the coordination of information and political debates around the recent unrest in London, or ‘#wikileaks’ for the controversy around Wikileaks thus aid the formation of ad hoc publics around specific themes and topics. They emerge from within the Twitter community – sometimes as a result of pre-planning or quickly reached consensus, sometimes through protracted debate about what the appropriate hashtag for an event or topic should be (which may also lead to the formation of competing publics using different hashtags). Drawing on innovative methodologies for the study of Twitter content, this paper examines the use of hashtags in political debate in the context of a number of major case studies.
Resumo:
This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the colour information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centred on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
This artwork visualised my digital mind which is built on my technology experience. The contemporary technologies make available many small pieces of factual information that have affected the formation of my identity. This results that multiple identities can exist in a rhizomatic form through a vertical gene transfer. This does not refer to schizophrenia, but an ongoing transformation of digital mind.