940 resultados para SEALED VESSELS
Resumo:
Migraine is a common neurovascular brain disorder characterised by recurrent attacks of severe headache that may be accompanied by various neurological symptoms. Migraine is thought to result from activation of the trigeminovascular system followed by vasodilation of pain-producing intracranial blood vessels and activation of second-order sensory neurons in the trigeminal nucleus caudalis. Calcitonin gene-related peptide (CGRP) is a mediator of neurogenic inflammation and the most powerful vasodilating neuropeptide, and has been implicated in migraine pathophysiology. Consequently, genes involved in CGRP synthesis or CGRP receptor genes may play a role in migraine and/or increase susceptibility. This study investigates whether variants in the gene that encodes CGRP, calcitonin-related polypeptide alpha (CALCA) or in the gene that encodes a component of its receptor, receptor activity modifying protein 1 (RAMP1), are associated with migraine pathogenesis and susceptibility. The single nucleotide polymorphisms (SNPs) rs3781719 and rs145837941 in the CALCA gene, and rs3754701 and rs7590387 at the RAMP1 locus, were analysed in an Australian Caucasian population of migraineurs and matched controls. Although we find no significant association of any of the SNPs tested with migraine overall, we detected a nominally significant association (p = 0.031) of the RAMP1 rs3754701 variant in male migraine subjects, although this is non-significant after Bonferroni correction for multiple testing.
Resumo:
Migraine is a common neurological disease with a genetic basis affecting approximately 12% of the population. Pain during a migraine attack is associated with activation of the trigeminal nerve system, which carries pain signals from the meninges and the blood vessels infusing the meninges to the trigeminal nucleus in the brain stem. The release of inflammatory mediators following cortical spreading depression (CSD) may further promote and sustain the activation and sensitization of meningeal nociceptors, inducing the persistent throbbing headache characterised in migraine. Lymphotoxin α (LTA) is a cytokine secreted by lymphocytes and is a member of the tumour necrosis factor (TNF) family. Genetic variation with the TNF and LTA genes may contribute to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Three LTA variants rs2009658, rs2844482 and rs2229094 were identified in a recent pGWAS study conducted in the Norfolk Island population as being potentially implicated in migraine with nominally significant p values of p = 0.0093, p = 0.0088 and p = 0.033 respectively. To determine whether these SNPs played a role in migraine in a general outbred population these SNPs were gentoyped in a large case control Australian Caucasian population and tested for association with migraine. All three SNPs showed no association in our cohort (p > 0.05). Validation of GWAS data in independent case-controls cohorts is essential to establish risk validity within specific population groups. The importance of cytokines in modulating neural inflammation and pain threshold in addition to other studies showing associations between TNF-α and SNPs in the LTA gene with migraine, suggests that LTA could be an important factor contributing to migraine. Although the present study did not support a role for the tested LTA variants in migraine, investigation of other variants within the LTA gene is still warranted.
Resumo:
Introduction Gene expression profiling has enabled us to demonstrate the heterogeneity of breast cancers. The potential of a tumour to grow and metastasise is partly dependant on its ability to initiate angiogenesis or growth and remodelling of new blood vessels, usually from a pre-existing vascular network, to ensure delivery of oxygen, nutrients, and growth factors to rapidly dividing transformed cells along with access to the systemic circulation. Cell–cell signalling of semaphorin ligands through interaction with their plexin receptors is important for the homeostasis and morphogenesis of many tissues and has been widely studied for a role in neural connectivity, cancer, cell migration and immune responses. This study investigated the role of four semaphorin/plexin signalling genes in human breast cancers in vivo and in vitro. Materials and methods mRNA was extracted from formalin fixed paraffin embedded archival breast invasive ductal carcinoma tissue samples of progressive grades (grades I–III) and compared to tissue from benign tumours. Gene expression profiles were determined by microarray using the Affymetrix GeneChip® Human Genome U133 Plus 2.0 Arrays and validated by Q-PCR using a Corbett RotorGene 6000. Following validation, the gene expression profile of the identified targets was correlated with those of the human breast cancer cell lines MCF-7 and MDA-MD-231. Results The array data revealed that 888 genes were found to be significantly (p ≤ 0.05) differentially expressed between grades I and II tumours and 563 genes between grade III and benign tumours. From these genes, we identified four genes involved in semaphorin–plexin signalling including SEMA4D which has previously been identified as being involved in increased angiogenesis in breast cancers, and three other genes, SEMA4F, PLXNA2 and PLXNA3, which in the literature were associated with tumourigenesis, but not directly in breast tumourigenesis. The microarray analysis revealed that SEMA4D was significantly (P = 0.0347) down-regulated in the grade III tumours compared to benign tumours; SEMA4F, was significantly (P = 0.0159) down-regulated between grades I and II tumours; PLXNA2 was significantly (P = 0.036) down-regulated between grade III and benign tumours and PLXNA3 significantly (P = 0.042) up-regulated between grades I and II tumours. Gene expression of SEMA4D was validated using Q-PCR, demonstrating the same expression profile in both data sets. When the sample set was increased to incorporate more cases, SEMA4D continued to follow the same expression profile, including statistical significance for the differences observed and small standard deviations. In vitro the same pattern was present where expression for SEMA4D was significantly higher in MDA-MB-231 cells when compared to MCF-7 cells. The expression of SEMA4F, PLXNA2 and PLXNA3 could not be validated using Q-PCR, however in vitro analysis of these three genes revealed that both SEMA4F and PLXNA3 followed the microarray trend in expression, although they did not reach significance. In contrast, PLXNA2 demonstrated statistical significance and was in concordance with the literature. Discussion We, and others, have proposed SEMA4D to be a gene with a potentially protective effect in benign tumours that contributes to tumour growth and metastatic suppression. Previous data supports a role for SEMA4F as a tumour suppressor in the peripheral nervous system but our data seems to indicate that the gene is involved in tumour progression in breast cancer. Our in vitro analysis of PLXNA2 revealed that the gene has higher expression in more aggressive breast cancer cell types. Finally, our in vitro analysis on PLXNA3 also suggest that this gene may have some form of growth suppressive role in breast cancer, in addition to a similar role for the gene previously reported in ovarian cancer. From the data obtained in this study, SEMA4D may have a role in more aggressive and potentially metastatic breast tumours. Conclusions Semaphorins and their receptors, the plexins, have been implicated in numerous aspects of neural development, however their expression in many other epithelial tissues suggests that the semaphorin–plexin signalling system also contributes to blood vessel growth and development. These findings warrant further investigation of the role of semaphorins and plexins and their role in normal and tumour-induced angiogenesis in vivo and in vitro. This may represent a new front of attack in anti-angiogenic therapies of breast and other cancers.
Resumo:
The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.
Resumo:
The growth of suitable tissue to replace natural blood vessels requires a degradable scaffold material that is processable into porous structures with appropriate mechanical and cell growth properties. This study investigates the fabrication of degradable, crosslinkable prepolymers of l-lactide-co-trimethylene carbonate into porous scaffolds by electrospinning. After crosslinking by γ-radiation, dimensionally stable scaffolds were obtained with up to 56% trimethylene carbonate incorporation. The fibrous mats showed Young’s moduli closely matching human arteries (0.4–0.8 MPa). Repeated cyclic extension yielded negligible change in mechanical properties, demonstrating the potential for use under dynamic physiological conditions. The scaffolds remained elastic and resilient at 30% strain after 84 days of degradation in phosphate buffer, while the modulus and ultimate stress and strain progressively decreased. The electrospun mats are mechanically superior to solid films of the same materials. In vitro, human mesenchymal stem cells adhered to and readily proliferated on the three-dimensional fiber network, demonstrating that these polymers may find use in growing artificial blood vessels in vivo.
Resumo:
A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.
Of dogs, fish, birds and turds : the social construction of sewage pollution by recreational boaters
Resumo:
Animals are often used as ‘evidence’ of marine pollution. Take for instance the ubiquitous images of miserable oil-soaked marine birds following high profile oil spills such as the Exxon Valdez, Pacific Adventurer and Deepwater Horizon incidents or the images of bloated floating fish carcasses which are used to signal the presence of toxic pollutants. In recent years waste discharges from vessels have come under increased public and regulatory scrutiny both in Australia and around the world. International, regional, national and local restrictions are becoming more stringent for high profile marine pollutants such as oil as well as previously overlooked vessel-sourced pollutants such as sewage. Drawing upon media reports and recreational boater responses to government attempts to regulate the discharge of sewage from recreational vessels, this paper considers the important role played by animals in constructions of marine pollution by sewage and attributions of blame for this pollution. Specifically, this study found that recreational boat owners disputed claims their sewage management practices posed an environmental threat arguing that the sewage discharged was readily and eagerly consumed by fish in the receiving environment. Boat owners also argued that increased levels of bacteria which indicate the presence of faeces within the marine environment could be directly attributed to the excrement of marine mammals and birds or were the result of dog faeces being washed through municipal storm water systems rather than the result of vessel discharges. By contrast the contamination of oysters was provided as evidence of sewage pollution by other stakeholders.
Resumo:
Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a threedimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28–40 kg).Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A threedimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.
Resumo:
Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis- related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.
Resumo:
INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.
Resumo:
INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.
Resumo:
INTRODUCTION Closed soft tissue trauma (CSTT) can be the result of a blunt impact, or a prolonged crush injury and involves damage to the skin, muscles and the neurovascular system. It causes a variety of symptoms such as haematoma and in severe cases may result in hypoxia and necrosis. There is evidence that early vasculature changes following the injury delays the tissue healing [1]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma and the effect of this on CSTT healing is currently missing. Research aims: Developing an experimental rat model to characterise the structural changes to the vasculature after trauma qualitatively and quantitatively using micro CT. MATERIAL AND METHODS An impact device was developed to apply a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetised rats [3]. After euthanizing the animals at 6 hours after trauma, CSTT was qualitatively evaluated by macroscopic observations of the skin and muscles. For vasculature visualisation, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil) using an infusion pump (Figure 4). The overall changes to the vasculature as a result of impact trauma were characterised qualitatively based on the 3D reconstructed images of the vasculature (Figure 5). For a smaller region of interest, the morphological parameters such as vessel thickness (diameter), spacing, and average number per volume were quantified using the scanner’s software. RESULTS AND DISCUSSION Visual observation of CSTT has revealed a haematoma in some animals (Figure 3). Micro CT images indicate good perfusion of the vasculature with contrast agent, allowing the major vessels to be identified (Figure 5). Qualitatively and quantitatively, no differences between injured and non-injured legs were observed at 6 h after trauma. Further time points of 12h, 24h, 3 days and 14 days after trauma will be characterised for identifying temporal changes of the vasculature during healing. Histomorphometical studies are required for validation of the results derived from the micro CT imaging. CONCLUSION AND FUTURE DIRECTION Findings of this research may contribute towards the establishment of a fundamental basis for the quantitative assessment and monitoring of CSTT based on microvasculature changes after trauma, which will ultimately allow for optimising the clinical treatment and improve patient outcomes.
Resumo:
Exogenous prostacyclin is effective in reducing pulmonary vascular resistance in some forms of human pulmonary hypertension (PH). To explore whether endogenous prostaglandins played a similar role in pulmonary hypertension, we examined the effect of deleting cyclooxygenase (COX)-gene isoforms in a chronic hypoxia model of PH. Pulmonary hypertension, examined by direct measurement of right ventricular end systolic pressure (RVESP), right ventricular hypertrophy (n = 8), and hematocrit (n = 3), was induced by 3 weeks of hypobarichypoxia in wild-type and COX-knockout (KO) mice. RVESP was increased in wild-type hypoxic mice compared with normoxic controls (24.4 ± 1.4 versus 13.8 ± 1.9 mm Hg; n = 8; p < 0.05). COX-2 KO mice showed a greater increase in RVESP following hypoxia (36.8 ± 2.7 mm Hg; p < 0.05). Urinary thromboxane (TX)B2 excretion increased following hypoxia (44.6 ± 11.1 versus 14.7 ± 1.8 ng/ml; n = 6; p < 0.05), an effect that was exacerbated by COX-2 gene disruption (54.5 ± 10.8 ng/ml; n = 6). In contrast, the increase in 6-keto-prostacyclin1α excretion following hypoxia was reduced by COX-2 gene disruption (29 ± 3 versus 52 ± 4.6 ng/ml; p < 0.01). Tail cut bleed times were lower following hypoxia, and there was evidence of intravascular thrombosis in lung vessels that was exacerbated by disruption of COX-2 and reduced by deletion of COX-1. The TXA2/endoperoxide receptor antagonist ifetroban (50 mg/kg/day) offset the effect of deleting the COX-2 gene, attenuating the hypoxia-induced rise in RVESP and intravascular thrombosis. COX-2 gene deletion exacerbates pulmonary hypertension, enhances sensitivity to TXA2, and induces intravascular thrombosis in response to hypoxia. The data provide evidence that endogenous prostaglandins modulate the pulmonary response to hypoxia. Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics.
Resumo:
Growth and metastatic spread of invasive carcinoma depends on angiogenesis, the formation of new blood vessels. Platelet-derived endothelial cell growth factor (PD-ECGF) is an angiogenic growth factor for a number of solid tumors, including lung, bladder, colorectal, and renal cell cancer. Cervical intraepithelial neoplasia (CIN) is the precursor to squamous cell cervical carcinoma (SCC). Mean vessel density (MVD) increases from normal cervical tissue, through low- and high-grade CIN to SCC. We evaluated PD-ECGF immunoreactivity and correlated its expression with MVD in normal, premalignant, and malignant cervical tissue. PD-ECGF expression was assessed visually within the epithelial tissues and scored on the extent and intensity of staining. MVD was calculated by counting the number of vessels positive for von Willebrand factor per unit area subtending normal or CIN epithelium or within tumor hotspots for SCC. Cytoplasmic and/or nuclear PD-ECGF immunoreactivity was seen in normal epithelium. PD-ECGF expression significantly increased with histologic grade from normal, through low- and high-grade CIN, to SCC (P < .02). A progressive significant increase in the microvessel density was also seen, ranging from a mean of 28 vessels for normal tissue to 57 for SCC (P < .0005). No correlation was found between PD-ECGF expression and MVD (P = .45). We conclude that PD-ECGF expression and MVD increase as the cervix transforms from a normal to a malignant phenotype. PD-ECGF is thymidine phosphorylase, a key enzyme in the activation of fluoropyrimidines, including 5-fluorouracil. Evaluation of PD-ECGF thymidine phosphorylase expression may be important in designing future chemotherapeutic trials in cervical cancer. Copyright (C) 2000 by W.B. Saunders Company.
Resumo:
Background: A recent study by Dhillon et al. [12], identified both angioinvasion and mTOR as prognostic biomarkers for poor survival in early stage NSCLC. The aim of this study was to verify the above study by examining the angioinvasion and mTOR expression profile in a cohort of early stage NSCLC patients and correlate the results to patient clinico-pathological data and survival. Methods: Angioinvasion was routinely recorded by the pathologist at the initial assessment of the tumor following resection. mTOR was evaluated in 141 early stage (IA-IIB) NSCLC patients (67 - squamous; 60 - adenocarcinoma; 14 - others) using immunohistochemistry (IHC) analysis with an immunohistochemical score (IHS) calculated (% positive cells × staining intensity). Intensity was scored as follows: 0 (negative); 1+ (weak); 2+ (moderate); 3+ (strong). The range of scores was 0-300. Based on the previous study a cut-off score of 30 was used to define positive versus negative patients. The impact of angioinvasion and mTOR expression on prognosis was then evaluated. Results: 101 of the 141 tumors studied expressed mTOR. There was no difference in mTOR expression between squamous cell carcinoma and adenocarcinoma. Angioinvasion (p= 0.024) and mTOR staining (p= 0.048) were significant univariate predictors of poor survival. Both remained significant after multivariate analysis (p= 0.037 and p= 0.020, respectively). Conclusions: Our findings verify angioinvasion and mTOR expression as new biomarkers for poor outcome in patients with early stage NSCLC. mTOR expressing patients may benefit from novel therapies targeting the mTOR survival pathway. © 2011 Elsevier Ireland Ltd.