971 resultados para Rotational inertia
Resumo:
Growing legume fallow crops has proven to be an important factor in reducing the yield decline effect in sugarcane production. Legumes can also provide a direct economic benefit to sugarcane farmers by providing a source of nitrogen. Further, in some instances, income can flow from the sale, of grain or seed. The following case study provides an insight into the changes made by Russell Young, a sugarcane farmer situated in the Rita Island area of the Burdekin district. The case study focuses on the economics of the old farming system versus a new farming system. The old farming system is based on the conventional farming practices previously used by the Young family in 2002 compared to the 2006 farming system which involves a reduction in tillage practices and use of a Soybean rotational crop for seed production. A whole-of-farm was used to assess the impact of the new farming system on farm profitability. A whole-of-farm economic analysis looks at the impact of a change in farming practice across the whole business, rather than focusing on one single component. This case study is specific to an individual grower’s situation and is not representative of all situations. When evaluating a farming system change, it is important to have a detailed plan.
Resumo:
This study aimed to unravel the effects of climate, topography, soil, and grazing management on soil organic carbon (SOC) stocks in the grazing lands of north-eastern Australia. We sampled for SOC stocks at 98 sites from 18 grazing properties across Queensland, Australia. These samples covered four nominal grazing management classes (Continuous, Rotational, Cell, and Exclosure), eight broad soil types, and a strong tropical to subtropical climatic gradient. Temperature and vapour-pressure deficit explained >80% of the variability of SOC stocks at cumulative equivalent mineral masses nominally representing 0-0.1 and 0-0.3m depths. Once detrended of climatic effects, SOC stocks were strongly influenced by total standing dry matter, soil type, and the dominant grass species. At 0-0.3m depth only, there was a weak negative association between stocking rate and climate-detrended SOC stocks, and Cell grazing was associated with smaller SOC stocks than Continuous grazing and Exclosure. In future, collection of quantitative information on stocking intensity, frequency, and duration may help to improve understanding of the effect of grazing management on SOC stocks. Further exploration of the links between grazing management and above- and below-ground biomass, perhaps inferred through remote sensing and/or simulation modelling, may assist large-area mapping of SOC stocks in northern Australia. © CSIRO 2013.
Resumo:
The motion generated by forced oscillations in an incompressible inviscid rotating and/or stratified fluid is examined under linear theory taking the density variation on the inertia terms. The solution consists of numerous internal modes in addition to the mode which oscillates with forcing frequency. Resonance occurs when the forcing frequency is equal to one of the frequencies of the internal modes. Some of these modes grow linearly or exponentially with time rendering the motion unstable and eventually may lead to turbulence. Most of the results discussed here will be missed under Boussinesq approximation.
Resumo:
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Resumo:
Rotational isomerism of S-methyl N-methyl dithiocarbamate (MMDTC) has been investigated by means of variable temperature proton NMR and i.r. spectroscopy. The i.r. spectra of MMDTC as neat, solution and at sub-ambient temperatures have been examined. Normal vibrational analysis of all the fundamentals of MMDTC has been carried out, the vibrational assignment has been compared with those of related secondary thioamides to note the consistency in the assignments and to obtain the pattern characteristic of the secondary thioamide vibrations.
Resumo:
Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation 1 and principal axis at azimuth 1, and a pure rotator of power 2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters
Resumo:
Vibrational stability of a large flexible, structurally damped spacecraft subject to large rigid body rotations is analysed modelling the system as an elastic continuum. Using solution of rigid body attitude motion under torque free conditions and modal analysis, the vibrational equations are reduced to ordinary differential equations with time-varying coefficients. Stability analysis is carried out using Floquet theory and Sonin-Polya theorem. The cases of spinning and non-spinning spacecraft idealized as a flexible beam plate undergoing simple structural vibration are analysed in detail. The critical damping required for stabilization is shown to be a function of the spacecraft's inertia ratio and the level of disturbance.
Resumo:
Ten Percent Terror brings together leading creatives from the fields of contemporary theatre, contemporary dance, music theatre, circus and digital arts in the first collaboration of its kind. Commissioned by Brisbane Powerhouse, with support from the Anzac Centenary Arts and Culture Fund and in partnership with Dancenorth and Company 2, this is an inter-disciplinary work that combines theatrical narrative with eloquent physicality, through circus and dance, to express certain truths of the soldiers' experience. This production will be a circus-narrative that uses the form and language of circus to express the key themes of risk, panic and brotherhood. Ten Percent Terror is intended to be a work of scale, yet also intimacy: of stillness and panic, inertia and chaos. Project partners, Dancenorth and Company 2, share the vision to use contemporary artistic disciplines to connect younger and modern audiences to the ANZAC legacy, perhaps offering a connection for those audiences that they may not find through more traditional art forms. The development process has included a community research project in Townsville, conducted by Shane Pike, which explored contemporary Australians’ stories through interviews with serving military personnel and the local community, as well as collecting photographic documentation and other artefacts from around Townsville. This was followed by an archival research project in Brisbane, where Pike reviewed letters, photographs and personal accounts of soldiers from WW1. The results of these projects will be used by the creative team to inform the development of Ten Percent Terror. Given Townsville’s reputation as Australia’s ‘garrison’ city, the project partners plan to deliver the world premiere performance of Ten Percent Terror in Townsville in late 2015. It is intended that Ten Percent Terror will receive its Brisbane premiere in November 2015 at Brisbane Powerhouse, as part of a four-performance season. This expert panel included discussion of the project and its place in analysing key aspects of Australia's wartime history.
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
The natural frequencies of a reservoir-foundation system are calculated by treating the foundation as a system of linear springs with inertia. The reservoir is treated as consisting of compressible liquid, and the influence of waves at the free surface is included. It is shown that the natural frequencies decrease monotonically as the depth of foundation participating in the motion increases. The influence of waves at the reservoir surface is negligible for the cases normally occurring in practice. It is also shown that the wavelength of motion along the reservoir has no influence on the frequencies when the foundation depth is large compared to the reservoir depth.
Resumo:
An important limitation of the existing IGC algorithms, is that they do not explicitly exploit the inherent time scale separation that exist in aerospace vehicles between rotational and translational motions and hence can be ineffective. To address this issue, a two-loop partial integrated guidance and control (PIGC) scheme has been proposed in this paper. In this design, the outer loop uses a recently developed, computationally efficient, optimal control formulation named as model predictive static programming. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the Dynamic inversion philosophy. Uncommonly, Six-Degree of freedom (Six-DOF) model is used directly in both the loops. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Comparative studies of PIGC with one loop IGC and conventional three loop design were carried out for engaging incoming high speed target. Simulation studies demonstrate the usefulness of this method.
Resumo:
A finite element formulation for the natural vibration analysis of tapered and pretwisted rotors has been presented. Numerical results for natural frequencies for various values of the geometric parameters and rotational speeds, have been computed for the case of rotors with and without pretwist. A Galerkin solution for the fundamental has also been worked out and has been used to provide a comparison for the finite element results. Charts for rapid estimation of the fundamental frequency parameter of tapered rotors, have been included.
Resumo:
Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation delta1 and principal axis at azimuth phgr1, and a pure rotator of power phgr2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters.
Resumo:
Farmland bird species have been declining in Europe. Many declines have coincided with general intensification of farming practices. In Finland, replacement of mixed farming, including rotational pastures, with specialized cultivation has been one of the most drastic changes from the 1960s to the 1990s. This kind of habitat deterioration limits the persistence of populations, as has been previously indicated from local populations. Integrated population monitoring, which gathers species-specific information of population size and demography, can be used to assess the response of a population to environment changes also at a large spatial scale. I targeted my analysis at the Finnish starling (Sturnus vulgaris). Starlings are common breeders in farmland habitats, but severe declines of local populations have been reported from Finland in the 1970s and 1980s and later from other parts of Europe. Habitat deterioration (replacement of pasture and grassland habitats with specialized cultivation areas) limits reproductive success of the species. I analysed regional population data in order to exemplify the importance of agricultural change to bird population dynamics. I used nestling ringing and nest-card data from 1951 to 2005 in order to quantify population trends and per capita reproductive success within several geographical regions (south/north and west/east aspects). I used matrix modelling, acknowledging age-specific survival and fecundity parameters and density-dependence, to model population dynamics. Finnish starlings declined by 80% from the end of the 1960s up to the end of the 1980s. The observed patterns and the model indicated that the population decline was due to the decline of the carrying capacity of farmland habitats. The decline was most severe in north Finland where populations largely become extinct. However, habitat deterioration was most severe in the southern breeding areas. The deteriorations in habitat quality decreased reproduction, which finally caused the decline. I suggest that poorly-productive northern populations have been partly maintained by immigration from the highly-productive southern populations. As the southern populations declined, ceasing emigration caused the population extinction in north. This phenomenon was explained with source sink population dynamics, which I structured and verified on the basis of a spatially explicit simulation model. I found that southern Finnish starling population exhibits ten-year cyclic regularity, a phenomenon that can be explained with delayed density-dependence in reproduction.
Resumo:
Gravity critical speeds of rotors have hitherto been studied using linear analysis, and ascribed to rotor stiffness asymmetry. Here, we study an idealized asymmetric nonlinear overhung rotor model of Crandall and Brosens, spinning close to its gravity critical speed.Nonlinearities arise from finite displacements, and the rotor's staticlateral deflection under gravity is taken as small. Assuming small asymmetry and damping, slow modulations of whirl amplitudes are studied using the method of multiple scales. Inertia asymmetry appears only at second order. More interestingly, even without stiffness asymmetry, the gravity-induced resonance survives through geometric nonlinearities. The gravity resonant forcing does not influence the resonant mode at leading order, unlike the typical resonant oscillations. Nevertheless,the usual phenomena of resonances, namely saddle-node bifurcations, jump phenomena and hysteresis, are all observed. An unanticipated periodic solution branch is found. In the three-dimensional space oftwo modal coefficients and a detuning parameter, the full set of periodic solutions is found to be an imperfect version of three mutually intersecting curves: a straight line,a parabola and an ellipse.