983 resultados para Rodriguez, Mike
Resumo:
Operation in urban environments creates unique challenges for research in autonomous ground vehicles. Due to the presence of tall trees and buildings in close proximity to traversable areas, GPS outage is likely to be frequent and physical hazards pose real threats to autonomous systems. In this paper, we describe a novel autonomous platform developed by the Sydney-Berkeley Driving Team for entry into the 2007 DARPA Urban Challenge competition. We report empirical results analyzing the performance of the vehicle while navigating a 560-meter test loop multiple times in an actual urban setting with severe GPS outage. We show that our system is robust against failure of global position estimates and can reliably traverse standard two-lane road networks using vision for localization. Finally, we discuss ongoing efforts in fusing vision data with other sensing modalities.
Resumo:
eZine and iRadio represent metaphors for multimedia communication on the Internet. Participating students experience a simulated Internet publishing environment in both their classroom and virtual learning environment. This chapter presents an autoethnographic account highlighting the voices of the learning designer and the teacher and provides evidence of the planning and implementation of two tertiary music elective courses over three iterations of each course. A blended learning environment was incorporated within each elective music course and a collaborative approach to development between lecturers, tutors, learning and technological designers using an iterative research design. The research suggests that learning design which provides real world examples and resources integrating authentic task design into their unit can provide meaningful and engaging experiences for students. The dialogue between learning designers and teachers and iterative review of the learning process and student outcomes, we believe, has engaged students meaningfully to achieve transferable learning outcomes.
Resumo:
A model for drug diffusion from a spherical polymeric drug delivery device is considered. The model contains two key features. The first is that solvent diffuses into the polymer, which then transitions from a glassy to a rubbery state. The interface between the two states of polymer is modelled as a moving boundary, whose speed is governed by a kinetic law; the same moving boundary problem arises in the one-phase limit of a Stefan problem with kinetic undercooling. The second feature is that drug diffuses only through the rubbery region, with a nonlinear diffusion coefficient that depends on the concentration of solvent. We analyse the model using both formal asymptotics and numerical computation, the latter by applying a front-fixing scheme with a finite volume method. Previous results are extended and comparisons are made with linear models that work well under certain parameter regimes. Finally, a model for a multi-layered drug delivery device is suggested, which allows for more flexible control of drug release.
Resumo:
In this paper we describe a body of work aimed at extending the reach of mobile navigation and mapping. We describe how running topological and metric mapping and pose estimation processes concurrently, using vision and laser ranging, has produced a full six-degree-of-freedom outdoor navigation system. It is capable of producing intricate three-dimensional maps over many kilometers and in real time. We consider issues concerning the intrinsic quality of the built maps and describe our progress towards adding semantic labels to maps via scene de-construction and labeling. We show how our choices of representation, inference methods and use of both topological and metric techniques naturally allow us to fuse maps built from multiple sessions with no need for manual frame alignment or data association.
Resumo:
This work details the results of a face authentication test (FAT2004) (http://www.ee.surrey.ac.uk/banca/icpr2004) held in conjunction with the 17th International Conference on Pattern Recognition. The contest was held on the publicly available BANCA database (http://www.ee.surrey.ac.uk/banca) according to a defined protocol (E. Bailly-Bailliere et al., June 2003). The competition also had a sequestered part in which institutions had to submit their algorithms for independent testing. 13 different verification algorithms from 10 institutions submitted results. Also, a standard set of face recognition software packages from the Internet (http://www.cs.colostate.edu/evalfacerec) were used to provide a baseline performance measure.
Resumo:
We study the problem of allocating stocks to dark pools. We propose and analyze an optimal approach for allocations, if continuous-valued allocations are allowed. We also propose a modification for the case when only integer-valued allocations are possible. We extend the previous work on this problem to adversarial scenarios, while also improving on their results in the iid setup. The resulting algorithms are efficient, and perform well in simulations under stochastic and adversarial inputs.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.
Resumo:
Experimental action potential (AP) recordings in isolated ventricular myoctes display significant temporal beat-to-beat variability in morphology and duration. Furthermore, significant cell-to-cell differences in AP also exist even for isolated cells originating from the same region of the same heart. However, current mathematical models of ventricular AP fail to replicate the temporal and cell-to-cell variability in AP observed experimentally. In this study, we propose a novel mathematical framework for the development of phenomenological AP models capable of capturing cell-to-cell and temporal variabilty in cardiac APs. A novel stochastic phenomenological model of the AP is developed, based on the deterministic Bueno-Orovio/Fentonmodel. Experimental recordings of AP are fit to the model to produce AP models of individual cells from the apex and the base of the guinea-pig ventricles. Our results show that the phenomenological model is able to capture the considerable differences in AP recorded from isolated cells originating from the location. We demonstrate the closeness of fit to the available experimental data which may be achieved using a phenomenological model, and also demonstrate the ability of the stochastic form of the model to capture the observed beat-to-beat variablity in action potential duration.
Resumo:
In an effort to evaluate and improve their practices to ensure the future excellence of the Texas highway system, the Texas Department of Transportation (TxDOT) sought a forum in which experts from other state departments of transportation could share their expertise. Thus, the Peer State Review of TxDOT Maintenance Practices project was organized and conducted for TxDOT by the Center for Transportation Research (CTR) at The University of Texas at Austin. The goal of the project was to conduct a workshop at CTR and in the Austin District that would educate the visiting peers on TxDOT’s maintenance practices and invite their feedback. CTR and TxDOT arranged the participation of the following directors of maintenance: Steve Takigawa, CA; Roy Rissky, KS; Eric Pitts, GA; Jim Carney, MO; Jennifer Brandenburg, NC; and David Bierschbach, WA. One of the means used to capture the peer reviewers’ opinions was a carefully designed booklet of 15 questions. The peers provided TxDOT with written responses to these questions, and the oral comments made during the workshop were also captured. This information was then compiled and summarized in the following report. An examination of the peers’ comments suggests that TxDOT should use a more holistic, statewide approach to funding and planning rather than funding and planning for each district separately. Additionally, the peers stressed the importance of allocating funds based on the actual conditions of the roadways instead of on inventory. The visiting directors of maintenance also recommended continuing and proliferating programs that enhance communication, such as peer review workshops.
Resumo:
Models of word meaning, built from a corpus of text, have demonstrated success in emulating human performance on a number of cognitive tasks. Many of these models use geometric representations of words to store semantic associations between words. Often word order information is not captured in these models. The lack of structural information used by these models has been raised as a weakness when performing cognitive tasks. This paper presents an efficient tensor based approach to modelling word meaning that builds on recent attempts to encode word order information, while providing flexible methods for extracting task specific semantic information.
Resumo:
Despite playing an extremely important role in shaping communities, the role and contribution of planners is not widely understood or acknowledged. At the same time, there is a shortage of planners in Australia, especially in non-urban areas. Thus, though an online survey of 185 rural and regional planners, this research explores their motivations, expectations and experiences. Most enjoyed and felt confident in their role, explaining that they valued the relaxed family orientated rural lifestyle and the varied nature of the planning work. Although they sometimes felt isolated, the non-urban location provided quicker progression to senior roles, the ability to engage directly with the community and to see the consequences of their decisions. Only half felt their education had prepared them well for their role, citing gaps in terms of computerised modelling, team leadership and conflict resolution skills. Their feedback centred on providing a more practical course, focussing more on regional planning, and encouraging urban and rural experience placements. As the first study to quantifiably explore rural and regional Australian planners perceptions of their role and challenges, the findings illustrate current experiences, key planning challenges, perceived educational gaps and future priorities.