668 resultados para Restrained Occupants.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road traffic accidents (RTA) are an important cause of premature death. We examined socio-demographic and geographical determinants of RTA mortality in Switzerland by linking 2000 census data to RTA mortality records 2000-2005 (ICD-10 codes V00-V99). Data from 5.5 million residents aged 18-94 years, 1744 study areas, and 1620 RTA deaths were analyzed, including 978 deaths (60.4%) in motor vehicle occupants, 254 (15.7%) in motorcyclists, 107 (6.6%) in cyclists, and 259 (16.0%) in pedestrians. Weibull survival models and Bayesian methods were used to calculate hazard ratios (HR), and standardized mortality ratios (SMR) across study areas. Adjusted HR comparing women with men ranged from 0.04 (95% CI 0.02-0.07) in motorcyclists to 0.43 (95% CI 0.32-0.56) in pedestrians. There was a u-shaped relationship with age in motor vehicle occupants and motorcyclists. In cyclists and pedestrians, mortality increased after age 55 years. Mortality was higher in individuals with primary education (HR 1.53; 95% CI 1.29-1.81), and higher in single (HR 1.24; 95% CI 1.05-1.46), widowed (HR 1.31; 95% CI 1.05-1.65) and divorced individuals (HR 1.62; 95% CI 1.33-1.97), compared to persons with tertiary education or married persons. The association with education was particularly strong for pedestrians (HR 1.87; 95% CI 1.20-2.91). RTA mortality increased with decreasing population density of study areas for motor vehicle occupants (test for trend p<0.0001) and motorcyclists (p=0.0021) but not for cyclists (p=0.39) or pedestrians (p=0.29). SMR standardized for socio-demographic and geographical variables ranged from 82 to 190. Prevention efforts should aim to reduce inequities across socio-demographic and educational groups, and across geographical areas, with interventions targeted at high-risk groups and areas, and different traffic users, including pedestrians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Outside of relatively limited crash testing with large trucks, very little is known regarding the performance of traffic barriers subjected to real-world large truck impacts. The purpose of this study was to investigate real-world large truck impacts into traffic barriers to determine barrier crash involvement rates, the impact performance of barriers not specifically designed to redirect large trucks, and the real-world performance of large-truck-specific barriers. Data sources included the Fatality Analysis Reporting System (2000-2009), the General Estimates System (2000-2009) and 155 in-depth large truck-to-barrier crashes from the Large Truck Crash Causation Study. Large truck impacts with a longitudinal barrier were found to comprise 3 percent of all police-reported longitudinal barrier impacts and roughly the same proportion of barrier fatalities. Based on a logistic regression model predicting barrier penetration, large truck barrier penetration risk was found to increase by a factor of 6 for impacts with barriers designed primarily for passenger vehicles. Although large-truck-specific barriers were found to perform better than non-heavy vehicle specific barriers, the penetration rate of these barriers were found to be 17 percent. This penetration rate is especially a concern because the higher test level barriers are designed to protect other road users, not the occupants of the large truck. Surprisingly, barriers not specifically designed for large truck impacts were found to prevent large truck penetration approximately half of the time. This suggests that adding costlier higher test level barriers may not always be warranted, especially on roadways with lower truck volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-control allows an individual to obtain a more preferred outcome by forgoing an immediate interest. Self-control is an advanced cognitive process because it involves the ability to weigh the costs and benefits of impulsive versus restrained behavior, determine the consequences of such behavior, and make decisions based on the most advantageous course of action. Self-control has been thoroughly explored in Old World primates, but less so in New World monkeys. There are many ways to test self-control abilities in non-human primates, including exchange tasks in which an animal must forgo an immediate, less preferred reward to receive a delayed, more preferred reward. I examined the self-control abilities of six capuchin monkeys using a task in which a monkey was given a less preferred food and was required to wait a delay interval to trade the fully intact less preferred food for a qualitatively higher, more preferred food. Partially eaten pieces of the less preferred food were not rewarded, and delay intervals increased on an individual basis based on performance. All six monkeys were successful in inhibiting impulsivity and trading a less preferred food for a more preferred food at the end of a delay interval. The maximum duration each subject postponed gratification instead of responding impulsively was considered their delay tolerance. This study was the first to show that monkeys could inhibit impulsivity in a delay of gratification food exchange task in which the immediate and delayed food options differed qualitatively and a partially eaten less preferred food was not rewarded with the more preferred food at the end of a delay interval. These results show that New World monkeys possess advanced cognitive abilities similar to those of Old World primates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the impact of the Nursing Home Reform Act of 1987 on resident-and-facility-level risk factors for physical restraint use in nursing homes. Data on the 1990 and 1993 cohorts were obtained from 268 facilities in 10 states, and data on a 1996 cohort were obtained from the Medical Expenditure Panel Survey, which sampled more than 800 nursing homes nationwide. Multivariate logistic regression models were generated for each cohort to identify the impact of resident- and facility-level risk factors for restraint use. The results indicate that the use of physical restraints continues to decline. Thirty-six percent of the 1990 cohort, 26 percent of the 1993 cohort, and 17 percent of the 1996 cohort were physically restrained. Although there was a reduced rate of restraint use from 1990 to 1996, similar resident-level factors but different facility-level factors were associated with restraint use at different points in time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of human-structure interaction on the dynamic performance of occupied structures have long been observed. The inclusion of the effects of human-structure interaction is important to ensure that the dynamic response of a structure is not overestimated. Previous observations, both in service and in the laboratory, have yielded results indicating that the effects are dependent on the natural frequency of the structure, the posture of the occupants, and the mass ratio of the occupants to the structure. These results are noteworthy, but are limited in their application,because the data are sparse and are only pertinent to a specific set of characteristics identified in a given study. To examine these characteristics simultaneously and consistently, an experimental test structure was designed with variable properties to replicate a variety of configurations within a controlled setting focusing on the effects of passive occupants. Experimental modal analysis techniques were employed to both the empty and occupied conditions of the structure and the dynamic properties associated with each condition were compared. Results similar to previous investigations were observed, including both an increase and a decrease in natural frequency of the occupied structure with respect to the empty structure, as well as the identification of a second mode of vibration. The damping of the combined system was higher for all configurations. Overall, this study provides a broad data set representing a wide array of configurations. The experimental results of this study were used to assess current recommendations for the dynamic properties of a crowd to analytically predict the effects of human-structure interaction. The experimental results were used to select a set of properties for passive, standing occupants and develop a new model that can more accurately represent the behavior of the human-structure system as experimentally measured in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These investigations will discuss the operational noise caused by automotive torque converters during speed ratio operation. Two specific cases of torque converter noise will be studied; cavitation, and a monotonic turbine induced noise. Cavitation occurs at or near stall, or zero turbine speed. The bubbles produced due to the extreme torques at low speed ratio operation, upon collapse, may cause a broadband noise that is unwanted by those who are occupying the vehicle as other portions of the vehicle drive train improve acoustically. Turbine induced noise, which occurs at high engine torque at around 0.5 speed ratio, is a narrow-band phenomenon that is audible to vehicle occupants currently. The solution to the turbine induced noise is known, however this study is to gain a better understanding of the mechanics behind this occurrence. The automated torque converter dynamometer test cell was utilized in these experiments to determine the effect of torque converter design parameters on the offset of cavitation and to employ the use a microwave telemetry system to directly measure pressures and structural motion on the turbine. Nearfield acoustics were used as a detection method for all phenomena while using a standardized speed ratio sweep test. Changes in filtered sound pressure levels enabled the ability to detect cavitation desinence. This, in turn, was utilized to determine the effects of various torque converter design parameters, including diameter, torus dimensions, and pump and stator blade designs on cavitation. The on turbine pressures and motion measured with the microwave telemetry were used to understand better the effects of a notched trailing edge turbine blade on the turbine induced noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study will look at the passenger air bag (PAB) performance in a fix vehicle environment using Partial Low Risk Deployment (PLRD) as a strategy. This development will follow test methods against actual baseline vehicle data and Federal Motor Vehicle Safety Standards 208 (FMVSS 208). FMVSS 208 states that PAB compliance in vehicle crash testing can be met using one of three deployment methods. The primary method suppresses PAB deployment, with the use of a seat weight sensor or occupant classification sensor (OCS), for three-year old and six-year old occupants including the presence of a child seat. A second method, PLRD allows deployment on all size occupants suppressing only for the presents of a child seat. A third method is Low Risk Deployment (LRD) which allows PAB deployment in all conditions, all statures including any/all child seats. This study outlines a PLRD development solution for achieving FMVSS 208 performance. The results of this study should provide an option for system implementation including opportunities for system efficiency and other considerations. The objective is to achieve performance levels similar too or incrementally better than the baseline vehicles National Crash Assessment Program (NCAP) Star rating. In addition, to define systemic flexibility where restraint features can be added or removed while improving occupant performance consistency to the baseline. A certified vehicles’ air bag system will typically remain in production until the vehicle platform is redesigned. The strategy to enable the PLRD hypothesis will be to first match the baseline out of position occupant performance (OOP) for the three and six-year old requirements. Second, improve the 35mph belted 5th percentile female NCAP star rating over the baseline vehicle. Third establish an equivalent FMVSS 208 certification for the 25mph unbelted 50th percentile male. FMVSS 208 high-speed requirement defines the federal minimum crash performance required for meeting frontal vehicle crash-test compliance. The intent of NCAP 5-Star rating is to provide the consumer with information about crash protection, beyond what is required by federal law. In this study, two vehicles segments were used for testing to compare and contrast to their baseline vehicles performance. Case Study 1 (CS1) used a cross over vehicle platform and Case Study 2 (CS2) used a small vehicle segment platform as their baselines. In each case study, the restraints systems were from different restraint supplier manufactures and each case contained that suppliers approach to PLRD. CS1 incorporated a downsized twins shaped bag, a carryover inflator, standard vents, and a strategic positioned bag diffuser to help disperse the flow of gas to improve OOP. The twin shaped bag with two segregated sections (lobes) to enabled high-speed baseline performance correlation on the HYGE Sled. CS2 used an A-Symmetric (square shape) PAB with standard size vents, including a passive vent, to obtain OOP similar to the baseline. The A-Symmetric shape bag also helped to enabled high-speed baseline performance improvements in HYGE Sled testing in CS2. The anticipated CS1 baseline vehicle-pulse-index (VPI) target was in the range of 65-67. However, actual dynamic vehicle (barrier) testing was overshadowed with the highest crash pulse from the previous tested vehicles with a VPI of 71. The result from the 35mph NCAP Barrier test was a solid 4-Star (4.7 Star) respectfully. In CS2, the vehicle HYGE Sled development VPI range, from the baseline was 61-62 respectively. Actual NCAP test produced a chest deflection result of 26mm versus the anticipated baseline target of 12mm. The initial assessment of this condition was thought to be due to the vehicles significant VPI increase to 67. A subsequent root cause investigation confirmed a data integrity issue due to the instrumentation. In an effort to establish a true vehicle test data point a second NCAP test was performed but faced similar instrumentation issues. As a result, the chest deflect hit the target of 12.1mm; however a femur load spike, similar to the baseline, now skewed the results. With noted level of performance improvement in chest deflection, the NCAP star was assessed as directional for 5-Star capable performance. With an actual rating of 3-Star due to instrumentation, using data extrapolation raised the ratings to 5-Star. In both cases, no structural changes were made to the surrogate vehicle and the results in each case matched their perspective baseline vehicle platforms. These results proved the PLRD is viable for further development and production implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the UsedSoft ruling of the CJEU in 2012, there has been the distinct feeling that – like the big bang - UsedSoft signals the start of a new beginning. As we enter this brave new world, the Copyright Directive will be read anew: misalignments in the treatment of physical and digital content will be resolved; accessibility and affordability for consumers will be heightened; and lock-in will be reduced as e-exhaustion takes hold. With UsedSoft as a precedent, the Court can do nothing but keep expanding its own ruling. For big bang theorists, it is only a matter of time until the digital first sale meteor strikes non-software downloads also. This paper looks at whether the UsedSoft ruling could indeed be the beginning of a wider doctrine of e-exhaustion, or if it is simply a one-shot comet restrained by provisions of the Computer Program Directive on which it was based. Fighting the latter corner, we have the strict word of the law; in the UsedSoft ruling, the Court appears to willingly bypass the international legal framework of the WCT. As far as expansion goes, the Copyright Directive was conceived specifically to implement the WCT, thus the legislative intent is clear. The Court would not, surely, invoke its modicum of creativity there also... With perhaps undue haste in a digital market of many unknowns, it seems this might well be the case. Provoking the big bang theory of e-exhaustion, the UsedSoft ruling can be read as distinctly purposive, but rather than having copyright norms in mind, the standard for the Court is the same free movement rules that underpin the exhaustion doctrine in the physical world. With an endowed sense of principled equivalence, the Court clearly wishes the tangible and intangible rules to be aligned. Against the backdrop of the European internal market, perhaps few legislative instruments would staunchly stand in its way. With firm objectives in mind, the UsedSoft ruling could be a rather disruptive meteor indeed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural modifications upon heating of pentagonite, Ca(VO)(Si4O10)·4H2O (space group Ccm21, a=10.3708(2), b=14.0643(2), c=8.97810(10) Å, V=1309.53(3) Å3) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 °C and in steps of 50 °C between 250 and 400 °C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V4+O5 square pyramids. Ca and H2O molecules are extraframework occupants. Room temperature diffraction data allowed refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H2O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H2O. The H2O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 °C the H2O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H2O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) Å3 leading to a formula with 3H2O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 °C Ca(VO)(Si4O10)·3H2O transformed into a new phase with 1H2O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific TOT angles led to contraction of the porous three-dimensional framework. In addition, H2O at O9 was expelled while H2O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) Å3. The Ca coordination reduced from seven- to six-fold. At 225 °C a new anhydrous phase with space group Pna21 but without doubling of c had formed. Release of H2O at O7 caused additional contraction of TOT angles and volume reduction (V=1036.31(9) Å3). Ca adopted five-fold coordination. During heating excursion up to 400 °C this anhydrous phase remained preserved. Between room temperature and 225 °C the unit-cell volume decreased by 21% due to dehydration. The dehydration steps compare well with the thermo-gravimetric data reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To track dehydration behavior of cavansite, Ca(VO)(Si4O10)·4H2O space group Pnma, a = 9.6329(2), b = 13.6606(2), c = 9.7949(2) Å, V = 1288.92(4) Å3 single-crystal X-ray diffraction data on a crystal from Wagholi quarry, Poona district (India) were collected up to 400 °C in steps of 25 °C up to 250 °C and in steps of 50 °C between 250 and 400 °C. The structure of cavansite is characterized by layers of silicate tetrahedra connected by V4+O5 square pyramids. This way a porous framework structure is formed with Ca and H2O as extraframework occupants. At room temperature, the hydrogen bond system was analyzed. Ca is eightfold coordinated by four bonds to O of the framework structure and four bonds to H2O molecules. H2O linked to Ca is hydrogen bonded to the framework and also to adjacent H2O molecules. The dehydration in cavansite proceeds in four steps.At 75 °C, H2O at O9 was completely expelled leading to 3 H2O pfu with only minor impact on framework distortion and contraction V = 1282.73(3) Å3. The Ca coordination declined from originally eightfold to sevenfold and H2O at O7 displayed positional disorder.At 175 °C, the split O7 sites approached the former O9 position. In addition, the sum of the three split positions O7, O7a, and O7b decreased to 50% occupancy yielding 2 H2O pfu accompanied by a strong decrease in volume V = 1206.89(8) Å3. The Ca coordination was further reduced from sevenfold to sixfold.At 350 °C, H2O at O8 was released leading to a formula with 1 H2O pfu causing additional structural contraction (V = 1156(11) Å3). At this temperature, Ca adopted fivefold coordination and O7 rearranged to disordered positions closer to the original O9 H2O site.At 400 °C, cavansite lost crystallinity but the VO2+ characteristic blue color was preserved. Stepwise removal of water is discussed on the basis of literature data reporting differential thermal analyses, differential thermo-gravimetry experiments and temperature dependent IR spectra in the range of OH stretching vibrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social role theory postulates that gender stereotypes are restrained for men and women observed in the same social role. Cultural differences in the valuation of communal attributes might moderate this effect. To examine this possibility, 288 participants (144 German, 144 Japanese) estimated the communal and agentic attributes of an average man or woman described in a male-dominated role, a female-dominated role, or without role information. We hypothesized and found that in Germany and Japan, participants perceived men as more agentic than women without role information and as similarly agentic in the same role. However, for communion, German and Japanese participants reacted differently. German participants perceived women as more communal than men without role information and in male-dominated roles and perceived men as more communal than women in female-dominated roles. Japanese participants perceived all targets as similarly communal, regardless of role or gender, suggesting that communion is generally expected in Japan.