889 resultados para Research Skills
Resumo:
Goal: To describe clinical and laboratory features of human immunodeficiency infection (HIV)-infected patients with neurosyphilis. Study Design: Retrospective study of 27 consecutive cases of HIV-infected patients with a positive Venereal Disease Research Laboratory (VDRL) in cerebrospinal fluid (CSF). Results: Median of age was 36 years and 89% were men. Ten (37%) patients had previous nonneurologic syphilis treatment. At the time of neurosyphilis diagnosis, 10 (37%) patients had early syphilis, and 6 of them were neurologically asymptomatic. Nine (33%) patients had symptomatic neurosyphilis. Twenty-six (96%) patients were classified with early neurosyphilis. The medians of serum VDRL and CD4(+) T cell counts were 1:128 and 182 cell/mu L, respectively. Twenty five (93%) patients presented serum VDRL titers >= 1:16. Five of 6 patients with early syphilis and asymptomatic neurosyphilis, presented serum VDRL >= 1:16. Symptomatic patients showed lower CD4(+) T cell counts (59 cell/mu L vs. 208 cell/mu L, P = 0.03) and higher protein concentration on CSF (118 mg/dL vs. 39 mg/dL, P <0.001) than asymptomatic patients. Conclusions: Most patients had early and asymptomatic neurosyphilis, and more than one third had early syphilis. Patients with symptomatic neurosyphilis showed lower CD4(+) T cell counts and higher protein concentration on CSF than those asymptomatic. Most patients had serum VDRL titers >= 1:16, regardless of syphilis stage.
Resumo:
Introduction: The pterygopalatine fossa (PPF) is a narrow space located between the posterior wall of the antrum and the pterygoid plates. Surgical access to the PPF is difficult because of its protected position and its complex neurovascular anatomy. Endonasal approaches using rod lens endoscopes, however, provide better visualization of this area and are associated with less morbidity than external approaches. Our aim was to develop a simple anatomical model using cadaveric specimens injected with intravascular colored silicone to demonstrate the endoscopic anatomy of the PPF. This model could be used for surgical instruction of the transpterygoid approach. Methods: We dissected six PPF in three cadaveric specimens prepared with intravascular injection of colored material using two different injection techniques. An endoscopic endonasal approach, including a wide nasoantral window and removal of the posterior antrum wall, provided access to the PPF. Results: We produced our best anatomical model injecting colored silicone via the common carotid artery. We found that, using an endoscopic approach, a retrograde dissection of the sphenopalatine artery helped to identify the internal maxillary artery (IMA) and its branches. Neural structures were identified deeper to the vascular elements. Notable anatomical landmarks for the endoscopic surgeon are the vidian nerve and its canal that leads to the petrous portion of the internal carotid artery (ICA), and the foramen rotundum, and V2 that leads to Meckel`s cave in the middle cranial fossa. These two nerves, vidian and V2, are separated by a pyramidal shaped bone and its apex marks the ICA. Conclusion: Our anatomical model provides the means to learn the endoscopic anatomy of the PPF and may be used for the simulation of surgical techniques. An endoscopic endonasal approach provides adequate exposure to all anatomical structures within the PPF. These structures may be used as landmarks to identify and control deeper neurovascular structures. The significance is that an anatomical model facilitates learning the surgical anatomy and the acquisition of surgical skills. A dissection superficial to the vascular structures preserves the neural elements. These nerves and their bony foramina, such as the vidian nerve and V2, are critical anatomical landmarks to identify and control the ICA at the skull base.
Resumo:
Previous chapters have presented the latest findings in neuroscience research, and have pointed to potential treatment and prevention strategies. However, there are many ethical implications of the research itself, as well as the treatment and prevention strategies, that must be considered. The rapid pace of change in the field of neuroscience brings with it a host of new ethical issues, which need to be addressed. This chapter considers the important ethical and human rights issues that are raised by neuroscience research on psychoactive substance dependence.