871 resultados para Rejection-sampling Algorithm
Resumo:
INTRODUCTION: The decline of malaria and scale-up of rapid diagnostic tests calls for a revision of IMCI. A new algorithm (ALMANACH) running on mobile technology was developed based on the latest evidence. The objective was to ensure that ALMANACH was safe, while keeping a low rate of antibiotic prescription. METHODS: Consecutive children aged 2-59 months with acute illness were managed using ALMANACH (2 intervention facilities), or standard practice (2 control facilities) in Tanzania. Primary outcomes were proportion of children cured at day 7 and who received antibiotics on day 0. RESULTS: 130/842 (15∙4%) in ALMANACH and 241/623 (38∙7%) in control arm were diagnosed with an infection in need for antibiotic, while 3∙8% and 9∙6% had malaria. 815/838 (97∙3%;96∙1-98.4%) were cured at D7 using ALMANACH versus 573/623 (92∙0%;89∙8-94∙1%) using standard practice (p<0∙001). Of 23 children not cured at D7 using ALMANACH, 44% had skin problems, 30% pneumonia, 26% upper respiratory infection and 13% likely viral infection at D0. Secondary hospitalization occurred for one child using ALMANACH and one who eventually died using standard practice. At D0, antibiotics were prescribed to 15∙4% (12∙9-17∙9%) using ALMANACH versus 84∙3% (81∙4-87∙1%) using standard practice (p<0∙001). 2∙3% (1∙3-3.3) versus 3∙2% (1∙8-4∙6%) received an antibiotic secondarily. CONCLUSION: Management of children using ALMANACH improve clinical outcome and reduce antibiotic prescription by 80%. This was achieved through more accurate diagnoses and hence better identification of children in need of antibiotic treatment or not. The building on mobile technology allows easy access and rapid update of the decision chart. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201011000262218.
Resumo:
OBJECTIVE: To review the available knowledge on epidemiology and diagnoses of acute infections in children aged 2 to 59 months in primary care setting and develop an electronic algorithm for the Integrated Management of Childhood Illness to reach optimal clinical outcome and rational use of medicines. METHODS: A structured literature review in Medline, Embase and the Cochrane Database of Systematic Review (CDRS) looked for available estimations of diseases prevalence in outpatients aged 2-59 months, and for available evidence on i) accuracy of clinical predictors, and ii) performance of point-of-care tests for targeted diseases. A new algorithm for the management of childhood illness (ALMANACH) was designed based on evidence retrieved and results of a study on etiologies of fever in Tanzanian children outpatients. FINDINGS: The major changes in ALMANACH compared to IMCI (2008 version) are the following: i) assessment of 10 danger signs, ii) classification of non-severe children into febrile and non-febrile illness, the latter receiving no antibiotics, iii) classification of pneumonia based on a respiratory rate threshold of 50 assessed twice for febrile children 12-59 months; iv) malaria rapid diagnostic test performed for all febrile children. In the absence of identified source of fever at the end of the assessment, v) urine dipstick performed for febrile children <2 years to consider urinary tract infection, vi) classification of 'possible typhoid' for febrile children >2 years with abdominal tenderness; and lastly vii) classification of 'likely viral infection' in case of negative results. CONCLUSION: This smartphone-run algorithm based on new evidence and two point-of-care tests should improve the quality of care of <5 year children and lead to more rational use of antimicrobials.
Resumo:
Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In this model, the queries are propagated through the social network, with faster propagation through more trustable acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the answers that arrive first are the most likely to be relevant, and we computed the correlation of answer relevance with the order of arrival to demonstrate this result. We obtained correlations equivalent to the heuristics that use global knowledge, such as profile similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol Asknext, it is possible to stop a search when enough relevant answers have been found; additionally, stopping the search early only introduces a minimal risk of not obtaining the best possible answer. Furthermore, Question Waves does not require a re-ranking algorithm because the results arrive sorted
Resumo:
Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intra-individual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076-4.5) mg kg(-1) in body feathers, 0.44 (0.040-4.9) mg kg(-1) in primary and 0.60 (0.042-4.7) mg kg(-1) in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both between-feather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.
Resumo:
This study aimed at comparing the efficiency of various sampling materials for the collection and subsequent analysis of organic gunshot residues (OGSR). To the best of our knowledge, it is the first time that sampling devices were investigated in detail for further quantitation of OGSR by LC-MS. Seven sampling materials, namely two "swab"-type and five "stub"-type collection materials, were tested. The investigation started with the development of a simple and robust LC-MS method able to separate and quantify molecules typically found in gunpowders, such as diphenylamine or ethylcentralite. The evaluation of sampling materials was then systematically carried out by first analysing blank extracts of the materials to check for potential interferences and determining matrix effects. Based on these results, the best four materials, namely cotton buds, polyester swabs, a tape from 3M and PTFE were compared in terms of collection efficiency during shooting experiments using a set of 9 mm Luger ammunition. It was found that the tape was capable of recovering the highest amounts of OGSR. As tape-lifting is the technique currently used in routine for inorganic GSR, OGSR analysis might be implemented without modifying IGSR sampling and analysis procedure.
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach