828 resultados para Reduced glutathione
Resumo:
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.
Resumo:
Schizophrenia pathophysiology implies both abnormal redox control and dysconnectivity of the prefrontal cortex, partly related to oligodendrocyte and myelin impairments. As oligodendrocytes are highly vulnerable to altered redox state, we investigated the interplay between glutathione and myelin. In control subjects, multimodal brain imaging revealed a positive association between medial prefrontal glutathione levels and both white matter integrity and resting-state functional connectivity along the cingulum bundle. In early psychosis patients, only white matter integrity was correlated with glutathione levels. On the other side, in the prefrontal cortex of peripubertal mice with genetically impaired glutathione synthesis, mature oligodendrocyte numbers, as well as myelin markers, were decreased. At the molecular levels, under glutathione-deficit conditions induced by short hairpin RNA targeting the key glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox regulation have a critical role in myelination processes and white matter maturation in the prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia.
Resumo:
Mitogen-activated protein kinases (MAPKs) are key regulators that have been linked to cell survival and death. Among the main classes of MAPKs, c-jun N-terminal kinase (JNK) has been shown to mediate cell stress responses associated with apoptosis. In Vitro, hypoxia induced a significant increase in 661W cell death that paralleled increased activity of JNK and c-jun. 661W cells cultured in presence of the inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death. In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that correlated with modulation of JNK activation. In vivo inhibition of JNK activation with D-JNKi resulted in a significant and sustained decrease in apoptosis in the ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death of the retina.
Resumo:
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Resumo:
UNLABELLED: Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION: Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity. (Hepatology 2015;62:1375-1387).
Resumo:
In this study, we randomly compared high doses of the tyrosine kinase inhibitor imatinib combined with reduced-intensity chemotherapy (arm A) to standard imatinib/hyperCVAD (cyclophosphamide/vincristine/doxorubicin/dexamethasone) therapy (arm B) in 268 adults (median age, 47 years) with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). The primary objective was the major molecular response (MMolR) rate after cycle 2, patients being then eligible for allogeneic stem cell transplantation (SCT) if they had a donor, or autologous SCT if in MMolR and no donor. With fewer induction deaths, the complete remission (CR) rate was higher in arm A than in arm B (98% vs 91%; P = .006), whereas the MMolR rate was similar in both arms (66% vs 64%). With a median follow-up of 4.8 years, 5-year event-free survival and overall survival (OS) rates were estimated at 37.1% and 45.6%, respectively, without difference between the arms. Allogeneic transplantation was associated with a significant benefit in relapse-free survival (hazard ratio [HR], 0.69; P = .036) and OS (HR, 0.64; P = .02), with initial white blood cell count being the only factor significantly interacting with this SCT effect. In patients achieving MMolR, outcome was similar after autologous and allogeneic transplantation. This study validates an induction regimen combining reduced-intensity chemotherapy and imatinib in Ph+ ALL adult patients and suggests that SCT in first CR is still a good option for Ph+ ALL adult patients. This trial was registered at www.clinicaltrials.gov as #NCT00327678.
Resumo:
To investigate the influence of glutathione (GSH) on cellular effects of nitric oxide (NO) formation, human colon adenocarcinoma cells were transfected with a vector allowing controlled expression of inducible nitric oxide synthase (iNOS). Protein levels of oxidative stress-sensitive heme oxygenase-1 (HO-1) were analyzed in the presence or absence of GSH depletion using L-buthionine-[S,R]-sulfoximine and iNOS induction. While no effect was observed in the presence of iNOS activity alone, a synergistic effect on HO-1 expression was observed in the presence of iNOS expression and GSH depletion. This effect was prevented by addition of N-methyl-L-arginine. Therefore, targeting of endogenous NO may be modulated by intracellular GSH.
Resumo:
In many species with internal fertilization, molecules transferred in the male ejaculate trigger and interact with physiological changes in females. It is controversial to what extent these interactions between the sexes act synergistically to mediate the female switch to a reproductive state or instead reflect sexual antagonism evolved as a by product of sexual selection on males. To address this question, we eliminated sexual selection by enforcing monogamy in populations of Drosophila melanogaster for 65 generations and then measured the expression of male seminal fluid protein genes and genes involved in the female response to mating. In the absence of sperm competition, male and female reproductive interests are perfectly aligned and any antagonism should be reduced by natural selection. Consistent with this idea, males from monogamous populations showed reduced expression of seminal fluid protein genes, 16% less on average than in polygamous males. Further, we identified 428 genes that responded to mating in females. After mating, females with an evolutionary history of monogamy exhibited lower relative expression of genes that were up regulated in response to mating and higher expression of genes that were down-regulated - in other words, their post-mating transcriptome appeared more virgin-like. Surprisingly, these genes showed a similar pattern even before mating, suggesting that monogamous females evolved to be less poised for mating and the accompanying receipt of male seminal fluid proteins. This reduced investment by both monogamous males and females in molecules involved in post-copulatory interactions points to a pervasive role of sexual conflict in shaping these interactions.
Resumo:
Hypertension is a major public health problem and a leading cause of death and disability in both developed and developing countries, affecting onequarter of the world"s adult population. Our aim was to evaluate whether the consumption of gazpacho, a Mediterranean vegetable-based cold soup rich in phytochemicals, is associated with lower blood pressure (BP) and/or reduced prevalence of hypertension in individuals at high cardiovascular risk. Methods and results: We selected 3995 individuals (58% women, mean age 67 y) at high cardiovascular risk (81% hypertensive) recruited into the PREDIMED study. BP, weight, and dietary and physical activity data were collected. In multivariate linear regression analyses, after adjustment, moderate and high gazpacho consumption categories were associated with reduced mean systolic BP of 1.9 mm Hg [95% confidence interval (CI): 3.4; 0.6] and 2.6 mm Hg (CI: 4.2; 1.0), respectively, and reduced diastolic BP of 1.5 mm Hg (CI: 2.3; 0.6) and 1.9 mm Hg (CI: 2.8; 1.1). By multiple-adjusted logistic regression analysis, gazpacho consumption was associated with a lower prevalence of hypertension, with OR Z 0.85 (CI: 0.73; 0.99) for each 250 g/week increase and OR Z 0.73 (CI: 0.55; 0.98) for high gazpacho consumption groups compared to the no-consumption group. Conclusions: Gazpacho consumption was inversely associated with systolic and diastolic BP and prevalence of hypertension in a cross-sectional Mediterranean population at high cardiovascular risk. The association between gazpacho intake and reduction of BP is probably due to synergy among several bioactive compounds present in the vegetable ingredients used to make the recipe.
Resumo:
Hypertension is a major public health problem and a leading cause of death and disability in both developed and developing countries, affecting onequarter of the world"s adult population. Our aim was to evaluate whether the consumption of gazpacho, a Mediterranean vegetable-based cold soup rich in phytochemicals, is associated with lower blood pressure (BP) and/or reduced prevalence of hypertension in individuals at high cardiovascular risk. Methods and results: We selected 3995 individuals (58% women, mean age 67 y) at high cardiovascular risk (81% hypertensive) recruited into the PREDIMED study. BP, weight, and dietary and physical activity data were collected. In multivariate linear regression analyses, after adjustment, moderate and high gazpacho consumption categories were associated with reduced mean systolic BP of 1.9 mm Hg [95% confidence interval (CI): 3.4; 0.6] and 2.6 mm Hg (CI: 4.2; 1.0), respectively, and reduced diastolic BP of 1.5 mm Hg (CI: 2.3; 0.6) and 1.9 mm Hg (CI: 2.8; 1.1). By multiple-adjusted logistic regression analysis, gazpacho consumption was associated with a lower prevalence of hypertension, with OR Z 0.85 (CI: 0.73; 0.99) for each 250 g/week increase and OR Z 0.73 (CI: 0.55; 0.98) for high gazpacho consumption groups compared to the no-consumption group. Conclusions: Gazpacho consumption was inversely associated with systolic and diastolic BP and prevalence of hypertension in a cross-sectional Mediterranean population at high cardiovascular risk. The association between gazpacho intake and reduction of BP is probably due to synergy among several bioactive compounds present in the vegetable ingredients used to make the recipe.
Resumo:
Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit-at least in some subjects (i.e., responders)-a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI's during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality-at least in this subgroup of subjects-by possibly exhibiting a muscle activation pattern similar to VOL contractions.
Resumo:
Background Chronic alcohol ingestion may cause severe biochemical and pathophysiological derangements to skeletal muscle. Unfortunately, these alcohol-induced events may also prime skeletal muscle for worsened, delayed, or possibly incomplete repair following acute injury. As alcoholics may be at increased risk for skeletal muscle injury, our goals were to identify the effects of chronic alcohol ingestion on components of skeletal muscle regeneration. To accomplish this, age- and gender-matched C57Bl/6 mice were provided normal drinking water or water that contained 20% alcohol (v/v) for 18-20 wk. Subgroups of mice were injected with a 1.2% barium chloride (BaCl2) solution into the tibialis anterior (TA) muscle to initiate degeneration and regeneration processes. Body weights and voluntary wheel running distances were recorded during the course of recovery. Muscles were harvested at 2, 7 or 14 days post-injection and assessed for markers of inflammation and oxidant stress, fiber cross-sectional areas, levels of growth and fibrotic factors, and fibrosis. Results Body weights of injured, alcohol-fed mice were reduced during the first week of recovery. These mice also ran significantly shorter distances over the two weeks following injury compared to uninjured, alcoholics. Injured TA muscles from alcohol-fed mice had increased TNFα and IL6 gene levels compared to controls 2 days after injury. Total protein oxidant stress and alterations to glutathione homeostasis were also evident at 7 and 14 days after injury. Ciliary neurotrophic factor (CNTF) induction was delayed in injured muscles from alcohol-fed mice which may explain, in part, why fiber cross-sectional area failed to normalize 14 days following injury. Gene levels of TGFβ1 were induced early following injury before normalizing in muscle from alcohol-fed mice compared to controls. However, TGFβ1 protein content was consistently elevated in injured muscle regardless of diet. Fibrosis was increased in injured, muscle from alcohol-fed mice at 7 and 14 days of recovery compared to injured controls. Conclusions Chronic alcohol ingestion appears to delay the normal regenerative response following significant skeletal muscle injury. This is evidenced by reduced cross-sectional areas of regenerated fibers, increased fibrosis, and altered temporal expression of well-described growth and fibrotic factors.
Resumo:
OBJECTIVE: Angiotensin receptor blockers (ARBs) have been suggested to reduce inflammation in randomized controlled trials. We assessed the association between ARBs and inflammatory markers in a general population setting. METHODS: This is a population-based prospective study conducted in Lausanne, Switzerland. Baseline data from 933 participants on antihypertensive drugs (424 on ARBs) was collected in 2003-2006. Follow-up data from 1120 participants (572 on ARBs) was collected in 2009-2012. C-reactive protein (CRP), interleukins 1β and 6 and tumor necrosis factor alpha (TNF-α) were assessed and categorized in quartiles. RESULTS: At baseline, no differences were found between participants taking or not taking ARBs for all inflammatory markers studied, and this association persisted after multivariate adjustment: odds ratios (ORs) and (95% confidence interval) for being in the highest quartile of interleukin-1β, interleukin-6, TNF-α and CRP for participants on ARB compared to participants not on ARB were 1.23 (0.89-1.70), 1.26 (0.93-1.70), 1.14 (0.85-1.53) and 1.27 (0.96-1.69) respectively (P > 0.05). These findings were further replicated in the follow-up study: OR and (95% CI) of 1.10 (0.78-1.55), 0.87 (0.64-1.19), 0.83 (0.61-1.14) and 0.91 (0.68-1.22) for interleukin-1β, interleukin-6, TNF-α and CRP respectively (P > 0.05). Finally, no effect of ARBs was found when comparing participants who received ARBs throughout the 5.4-year follow-up with participants on other antihypertensive drugs: OR and (95% CI) of 0.93 (0.61-1.42), 0.80 (0.54-1.17), 0.86 (0.59-1.25) and 0.95 (0.67-1.35) for interleukin-1β, interleukin-6, TNF-α and CRP respectively (P > 0.05). CONCLUSION: ARBs are not associated with reduced levels of inflammatory markers in the general population.
Resumo:
Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex- and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex- and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies.