959 resultados para Redox
Resumo:
The cyano-bridged complexes cis-[L14CoIIINCFeII(CN)5]– and cis-[L14CoIIINCFeIII(CN)5] (L14= 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) are prepared and characterised spectroscopically, electrochemically and structurally: Na{cis-[L14CoIIINCFeII(CN)5]}·9H2O, monoclinic space group P21/c, a= 14.758(3), b= 10.496(1), c= 19.359(3) , = 92.00(2)°, Z= 4; cis-[L14CoIIINCFeIII(CN)5]·4H2O, orthorhombic space group P212121, a= 9.492(1), b= 14.709(2), c= 18.760(3) , Z= 4. In both complexes, the pendant amine is cis to the bridging cyanide ligand. An analysis of the metal-to-metal charge transfer (MMCT) transition in these systems with Hush theory has been carried out. This has revealed that the change in the configuration of the macrocycle both decreases the redox isomer energy difference (E1/2) and increases the reorganisational energy () of the cis-[L14CoIIINCFeII(CN)5]– complex with respect to the trans-[L14CoIIINCFeII(CN)5]– complex, the result being that both isomers display an MMCT transition of similar energy. The variation in redox isomer energy differences of the configurational isomers has been related to strain energy differences by molecular mechanics analysis of the [CoL14Cl]2+/+ precursor complexes.
Resumo:
Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically, important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at similar to2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450,in, it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K-D = 0.7 mum), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.
Resumo:
psaA encodes a 37-kDa pneumococcal lipoprotein which is part of an ABC Mn(II) transport complex. Streptococcus pneumoniae D39 psaA mutants have previously been shown to be significantly less virulent than wild-type D39, but the mechanism underlying the attenuation has not been resolved. In this study, we have shown that psaA and psaD mutants are highly sensitive to oxidative stress, i.e., to superoxide and hydrogen peroxide, which might explain why they are less virulent than the wild-type strain. Our investigations revealed altered expression of the key oxidative-stress response enzymes superoxide dismutase and NADH oxidase in psaA and psaD mutants, suggesting that PsaA and PsaD may play important roles in the regulation of expression of oxidative-stress response enzymes and intracellular redox homeostasis.
Resumo:
Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P
Resumo:
CcmG is unlike other periplasmic thioredoxin (TRX)like proteins in that it has a specific reducing activity in an oxidizing environment and a high fidelity of interaction. These two unusual properties are required for its role in c-type cytochrome maturation. The crystal structure of CcmG reveals a modified TRX fold with an unusually acidic active site and a groove formed from two inserts in the fold. Deletion of one of the groove-forming inserts disrupts c-type cytochrome formation. Two unique structural features of CcmG-an acidic active site and an adjacent groove-appear to be necessary to convert an indiscriminately binding scaffold, the TRX fold, into a highly specific redox protein.
Resumo:
Sulfite dehydrogenase from Starkeya novella is an alphabeta heterodimer comprising a 40.6 kDa subunit (containing the Mo cofactor) and a smaller 8.8 kDa heme c subunit. The enzyme catalyses the oxidation of sulfite to sulfate with the natural electron acceptor being cytochrome c(550). Its catalytic mechanism is thought to resemble that found in eukaryotic sulfite oxiclases. Using protein film voltammetry and redox potentiometry, we have identified both Mo- and heme-centered redox responses from the enzyme immobilized on a pyrolytic graphite working electrode: E-m,E-8 (Fe-III/II) +177 mV; E-m,E-8 (Mo-VI/V) +211 mV and E(m,)8 (Mo-V/IV) -118 mV vs NHE; Upon addition of sulfite to the electrochemical cell a steady-state voltammogram is observed and an apparent Michaelis constant (K-m) of 26(l) muM was determined for the enzyme immobilized on the working electrode surface, which is comparable with the value obtained from solution assays.
Resumo:
High concentrations of ammonium ( up to 270 kg N/ha) have been observed in a Vertisol soil below 1 m depth near Warra in south-east Queensland. This study examined the possibility that increased water movement into the subsoil after the removal of native vegetation, and a subsequent increase in periods of waterlogging, could have triggered nitrate ammonification and be responsible for the production of ammonium. Two incubation experiments were conducted to test this hypothesis. The first involved the incubation of repacked cores that had been amended with 30 mg N/kg of 5 atom% N-15 nitrate under low oxygen conditions for a period of 360 days. Over this time period the N-15 enrichment of the exchangeable ammonium fraction was monitored in order to detect any reduction of nitrate to ammonium. The second experiment involved the incubation of soil amended with 30 mg N/ kg of 5 atom% N-15 nitrate under waterlogged and low oxygen conditions for 75 days. During this period the redox potential of the soil was monitored using a field test to determine if reducing conditions would develop in this soil over a period of waterlogging, combined with the monitoring of any nitrate reduction to ammonium. The results of these experiments indicated that a small amount of nitrate ammonification (< 0.1 mg N/ kg) could be observed in the Warra subsoil, but that unless the rate of reduction were to significantly increase with time, this could not account for the accumulation of ammonium observed in the field. The environmental conditions that would make either dissimilatory or abiotic nitrate ammonification favourable were not observed to develop. Consequently, it has been concluded that the observed nitrate ammonification occurred via an assimilatory pathway. Due to the low rate of microbial activity in this subsoil it is considered unlikely that this process was responsible for the subsoil ammonium accumulation at Warra.
Resumo:
Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD(+) as the electron acceptor. R. capsulatus XDH forms an (alphabeta)(2) heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds; however, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. Here we demonstrate electrocatalytic activity of the recombinant enzyme, expressed in Escherichia coli, while immobilized on an edge plane pyrolytic graphite working electrode. Furthermore, we have determined all redox potentials of the four cofactors (Mo-VI/V, Mo-V/IV, FAD/FADH, FADH/FADH(2) and two distinct [2Fe-2S](2+/+) clusters) using a combination of potentiometric and voltammetric methods. A novel feature identified in catalytic voltammetry of XDH concerns the potential for the onset of catalysis (ca. 400 mV), which is at least 600 mV more positive than that of the highest potential cofactor. This unusual observation is explained on the basis of a pterin-associated oxidative switch during voltammetry that precedes catalysis.
Resumo:
The potential applications of macrocycles in chemistry and at its interfaces with biology and physics continue to emerge, one of which is as receptors for small molecules and ions. This review illustrates these applications with examples from the last ten years employing complexation as the binding mechanism; some of the systems presented have already found real-world sensor applications. In any case, the challenges remain to design more selective and sensitive receptors for guests.
Resumo:
Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
Novel [Ru(L)(Tpms)]Cl and [Ru(L)(Tpms(Ph))]Cl complexes (L = p-cymene, benzene, or hexamethylbenzene, Tpms = tris(pyrazolyl)-methanesulfonate, Tpms(Ph) = tris(3-phenylpyrazoly)methanesulfonate) have been prepared by reaction of [Ru(L)(mu-Cl)(2)](2) with Li[Tpms] and Li[Tpms(Ph)], respectively. [Ru(p-cymene)(Tpms)]BF4 has been synthesized through a metathetic reaction of [Ru(p-cymene)(Tpms)]Cl with AgBF4. [RuCl(cod)(Tpms)] (cod = 1,5-cyclooctadiene) and [RuCl(cod)(Tpms(Ph))] are also reported, being obtained by reaction of [RuCl2(cod)(MeCN)(2)] with Li[Tpms] and Li[Tpms(Ph)], respectively. The structures of the complexes and the coordination modes of the ligands have been established by IR, NMR, and single-crystal X-ray diffraction (for [RuL(Tpms)]X (L = p-cymene or HMB, X = Cl; L = p-cymene, X = BF4)) studies. Electrochemical studies showed that each complex undergoes a single-electron R-II -> R-III oxidation at a potential measured by cyclic voltammetry, allowing to compare the electron-donor characters of the tris(pyrazolyl)methanesulfonate and arene ligands, and to estimate, for the first time, the values of the Lever E-L ligand parameter for Tmps(Ph), HMB, and cod.
Resumo:
The organotin(IV) compounds [Me2Sn(L)(2)] (1), [Et(2)sn(L)(2)] (2), [(Bu2Sn)-Bu-n(L)(2)] (3), [(n)Oct(2)Sn(L)(2)] (4), [Ph2Sn(L)(2)] (5), and [PhOSnL](6) (6) have been synthesized from the reactions of 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid (HL) with the corresponding diorganotin(IV) oxide or dichloride. They were characterized by IR and multinuclear NMR spectroscopies, elemental analysis, cyclic voltammetry, and, for 2, 3, 4 and 6, single crystal X-ray diffraction analysis. While 1-5 are mononuclear diorganotin (IV) compounds, the X-ray diffraction of 6 discloses a hexameric drumlike structure with a prismatic Sn6O6 core. All these complexes undergo irreversible reductions and were screened for their in vitro antitumor activities toward HL-60, BGC-823, Bel-7402, and KB human cancer cell lines. Within the mononuclear compounds, the most active ones (3, 5) are easiest to reduce (least cathodic reduction potentials), while the least active ones (1, 4) are the most difficult to reduce. Structural rearrangements (i.e., Sn-O bond cleavages and trans-to-cis isomerization) induced by reduction, which eventually can favor the bioactivity, are disclosed by theoretical/electrochemical studies.
Resumo:
Trends between the Hammett's sigma(p) and related normal sigma(n)(p), inductive sigma(I), resonance sigma(R), negative sigma(-)(p) and positive sigma(+)(p) polar conjugation and Taft's sigma(o)(p) substituent constants and the N-H center dot center dot center dot O distance, delta(N-H) NMR chemical shift, oxidation potential (E-p/2(ox), measured in this study by cyclic voltammetry (CV)) and thermodynamic parameters (pK, Delta G(0), Delta H-0 and Delta S-0) of the dissociation process of unsubstituted 3-(phenylhydrazo)pentane-2,4-dione (HL1) and its para-substituted chloro (HL2), carboxy (HL3), fluoro (HL4) and nitro (HL5) derivatives were recognized. The best fits were found for sigma(p) and/or sigma(-)(p) in the cases of d(N center dot center dot center dot O), delta(N-H) and E-p/2(ox), showing the importance of resonance and conjugation effects in such properties, whereas for the above thermodynamic properties the inductive effects (sigma(I)) are dominant. HL2 exists in the hydrazo form in DMSO solution and in the solid state and contains an intramolecular H-bond with the N center dot center dot center dot O distance of 2.588(3)angstrom. It was also established that the dissociation process of HL1-5 is non-spontaneous, endothermic and entropically unfavourable, and that the increase in the inductive effect (sigma(I)) of para-substitutents (-H < -Cl < -COOH < -F < -NO2) leads to the corresponding growth of the N center dot center dot center dot O distance and decrease of the pK and of the changes of Gibbs free energy, of enthalpy and of entropy for the HL1-5 acid dissociation process. The electrochemical behaviour of HL1-5 was interpreted using theoretical calculations at the DFT/HF hybrid level, namely in terms of HOMO and LUMO compositions, and of reactivities induced by anodic and cathodic electron-transfers. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Pneumocystis pneumonia (PCP) is one of the most frequent causes of mortality among HIV-infected patients. Primaquine (PQ) is an antimalarial 8-aminoquinoline effective against PCP when given in combination with clindamycin. This has drawn the attention of Medicinal Chemists towards the anti-PCP activity of 8-aminoquinolines, not only confined to those exhibiting antimalarial activity [1]. It is thought that anti-PCP 8-aminoquinolines exert their anti-PCP activity by acting on the electronic transport and redox system of the P. carinii pathogen [1]. Recently, our research group has been developing imidazolidin-4-one derivatives of PQ (Scheme 1), targeting novel compounds with improved therapeutic action, namely, higher resistance to metabolic inactivation, lower toxicity and equal or higher antimalarial activity than that of the parent drug [2,3]. These imidazolidin-4-ones were seen to block the transmission of rodent malaria, caused by Plasmodium berghei on BalbC mice, to the mosquito vector Anopheles stephensi [3]. The anti-PCP activity of our PQ derivatives is now under study and preliminary in vitro assays [4] show that some of the compounds exhibit slight to moderate activity after a 72 h incubation period against P. carinii. In one case, the IC50 was comparable to that of parent PQ. Both these studies and forthcoming results from ongoing biological assays will be presented and discussed.