868 resultados para Recording and registration
Resumo:
Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.
Resumo:
We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.
Resumo:
The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.
Resumo:
This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
OBJECTIVES: To demonstrate the feasibility of panoramic image subtraction for implant assessment. STUDY DESIGN: Three titanium implants were inserted into a fresh pig mandible. One intraoral and 2 panoramic images were obtained at baseline and after each of 6 incremental (0.3, 0.6, 1.0, 1.5, 2.0, 2.5 mm) removals of bone. For each incremental removal of bone, the mandible was removed from and replaced in the holding device. Images representing incremental bone removals were registered by computer with the baseline images and subtracted. Assessment of the subtraction images was based on visual inspection and analysis of structured noise. RESULTS: Incremental bone removals were more visible in intraoral than in panoramic subtraction images; however, computer-based registration of panoramic images reduced the structured noise and enhanced the visibility of incremental removals. CONCLUSION: The feasibility of panoramic image subtraction for implant assessment was demonstrated.
Resumo:
To address food safety concerns of the public regarding the potential transfer of recombinant DNA (cry1Ab) and protein (Cry1Ab) into the milk of cows fed genetically modified maize (MON810), a highly specific and sensitive quantitative real-time PCR (qPCR) and an ELISA were developed for monitoring suspicious presence of novel DNA and Cry1Ab protein in bovine milk. The developed assays were validated according to the assay validation criteria specified in the European Commission Decision 2002/657/EC. The detection limit and detection capability of the qPCR and ELISA were 100 copies of cry1Ab microL(-1) milk and 0.4 ng mL(-1) Cry1Ab, respectively. Recovery rates of 84.9% (DNA) and 97% (protein) and low (<15%) imprecision revealed the reliable and accurate estimations. A specific qPCR amplification and use of a specific antibody in ELISA ascertained the high specificity of the assays. Using these assays for 90 milk samples collected from cows fed either transgenic (n = 8) or non-transgenic (n = 7) rations for 6 months, neither cry1Ab nor Cry1Ab protein were detected in any analyzed sample at the assay detection limits.
Resumo:
In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7+/-2.8 degrees and 4.0+/-2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6+/-2.6 degrees and 1.3+/-1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213+/-197 s; automatic registration took 82+/-15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9+/-2.9 degrees and 1.1+/-0.2 mm. Here, a registration took 91+/-6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.
Resumo:
We present the development of a multifunctional platform equipped with an array of silicon nitride micropipettes with dimensions allowing the implementation of extra- and intracellular operations. Micropipettes with outer diameter that ranges from 6 mum down to 300 nm and with walls thicknesses of 500 down to 150 nm are presented. The generic technology developed to fabricate these micropipettes has a number of advantages, including the ability to be implemented as ion-selective electrodes for (A) intracellular and (B) extracellular recordings and as (C) local drug microdispensers.
Resumo:
This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.
Resumo:
wo methods for registering laser-scans of human heads and transforming them to a new semantically consistent topology defined by a user-provided template mesh are described. Both algorithms are stated within the Iterative Closest Point framework. The first method is based on finding landmark correspondences by iteratively registering the vicinity of a landmark with a re-weighted error function. Thin-plate spline interpolation is then used to deform the template mesh and finally the scan is resampled in the topology of the deformed template. The second algorithm employs a morphable shape model, which can be computed from a database of laser-scans using the first algorithm. It directly optimizes pose and shape of the morphable model. The use of the algorithm with PCA mixture models, where the shape is split up into regions each described by an individual subspace, is addressed. Mixture models require either blending or regularization strategies, both of which are described in detail. For both algorithms, strategies for filling in missing geometry for incomplete laser-scans are described. While an interpolation-based approach can be used to fill in small or smooth regions, the model-driven algorithm is capable of fitting a plausible complete head mesh to arbitrarily small geometry, which is known as "shape completion". The importance of regularization in the case of extreme shape completion is shown.
Resumo:
Long-term surface ECG is routinely used to diagnose paroxysmal arrhythmias. However, this method only provides information about the heart's electrical activity. To this end, we investigated a novel esophageal catheter that features synchronous esophageal ECG and acceleration measurements, the latter being a record of the heart's mechanical activity. The acceleration data were quantified in a small study and successfully linked to the activity sequences of the heart in all subjects. The acceleration signals were additionally transformed into motion. The extracted cardiac motion was proved to be a valid reference input for an adaptive filter capable of removing relevant baseline wandering in the recorded esophageal ECGs. Taking both capabilities into account, the proposed recorder might be a promising tool for future long-term heart monitoring.