977 resultados para Receptor, Adenosine A1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three dimensional structures of 8-bromo 2',3',5' triacetyl adenosine (8-Br Tri A) and 8-bromo 2',3',5'-triacetyl guanosine (8-Br Tri G) have been determined by single crystal X-ray diffraction methods to study the combined effect of bromine and acetyl substitutions on molecular conformation and interactions. The ribose puckers differ from those found in unbrominated Tri A and Tri G and unacetylated 8-Br A and 8-Br G analogues

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of conformation-specific epitopes of hCG beta has been done using a simple batch method, Chemically or enzymatically-modified hCG beta has been prepared in a batch and the effect of modifications on the integrity of different epitope regions has been investigated in a quantitative manner using monoclonal antibodies (MAbs) immobilized on plastic tubes from culture supernatants. Based on the extent of damage done to different regions by different modifications, three conformation-specific epitopes of hCG beta have been identified. The method has been shown to have important advantages over the existing methods on many considerations, Using this approach, these epitopes have been shown to be at/near the receptor-binding region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt is made to draw a profile of adenosine triphosphate (ATP) and to project its many actions. The amazing versatility of its participation in a number of synthetic reactions lies in the oligophosphate structure. Many proteins that use ATP have conserved binding 'P-loop' but this gives no clue what makes it so special. The energy transducing reactions leading to synthesis of the terminal phosphodiester had at least three strategies. Of these, direct dehydration and transfer of inorganic phosphate using respiratory energy operate through mechano-coupling in a multisubunit protein. This tripartite, knob-stalk-base structure provides a novel mechanism of rotational catalysis and the tiniest molecular motor, All the reactions occur in concert with no sign of energized chemical intermediate. With the new knowledge on the crystal structure of F-1-ATPase, proton translocation needs a relook. An alternative perspective is emerging on energy being received and stored in polypeptide structure by breaking hydrogen bonds. Membrane serves the purpose of mobilizing the constituent proteins and also as a potential energy carrier of proteins with little loss of energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of progesterone receptors (PR) in the human placenta has been demonstrated using the reverse transcriptase-polymerase chain reaction technique. It was observed that the amount of PR in the human placenta is less during late gestation. Electrophoretic mobility shift assays with nuclear extract isolated from the first trimester and term placenta revealed three complexes when incubated with [P-32]dCTP-labelled progesterone response element, and, in competition with unlabelled progesterone response element, the formation of all three complexes was inhibited. When supershift analysis of these complexes was carried out using antibodies which cross-react with both the A and B types of the PR or only with the B type receptor, only the A-form of PR was detected in the human placenta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4�75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uroguanylin, guanylin, and lymphoguanylin are small peptides that activate renal and intestinal receptor guanylate cyclases (GC). They are structurally similar to bacterial heat-stable enterotoxins (ST) that cause secretory diarrhea. Uroguanylin, guanylin, and ST elicit natriuresis, kaliuresis, and diuresis by direct actions on kidney GC receptors. A 3,762-bp cDNA characterizing a uroguanylin/guanylin/ST receptor was isolated from opossum kidney (OK) cell RNA/cDNA. This kidney cDNA (OK-GC) encodes a mature protein containing 1,049 residues sharing 72.4-75.8% identity with rat, human, and porcine forms of intestinal GC-C receptors. COS or HEK-293 cells expressing OK-GC receptor protein were activated by uroguanylin, guanylin, or ST13 peptides. The 3.8-kb OK-GC mRNA transcript is most abundant in the kidney cortex and intestinal mucosa, with lower mRNA levels observed in urinary bladder, adrenal gland, and myocardium and with no detectable transcripts in skin or stomach mucosa. We propose that OK-GC receptor GC participates in a renal mechanism of action for uroguanylin and/or guanylin in the physiological regulation of urinary sodium, potassium, and water excretion. This renal tubular receptor GC may be a target for circulating uroguanylin in an endocrine link between the intestine and kidney and/or participate in an intrarenal paracrine mechanism for regulation of kidney function via the intracellular second messenger, cGMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is a membrane-associated form of guanylyl cyclase and serves as the receptor for the heat-stable enterotoxin (ST) peptide and endogenous ligands guanylin, uroguanylin, and lymphoguanylin. The major site of expression of GC-C is the intestinal epithelial cell, although GC-C is also expressed in extraintestinal tissue such as the kidney, airway epithelium, perinatal liver, stomach, brain, and adrenal glands. Binding of ligands to GC-C leads to accumulation of intracellular cGMP, the activation of protein kinases G and A, and phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that regulates salt and water secretion. We examined the expression of GC-C and its ligands in various tissues of the reproductive tract of the rat. Using reverse transcriptase and the polymerase chain reaction, we demonstrated the presence of GC-C, uroguanylin, and guanylin mRNA in both male and female reproductive organs. Western blot analysis using a monoclonal antibody to GC-C revealed the presence of differentially glycosylated forms of GC-C in the caput and cauda epididymis. Exogenous addition of uroguanylin to minced epididymal tissue resulted in cGMP accumulation, suggesting an autocrine or endocrine activation of GC-C in this tissue. Immunohistochemical analyses demonstrated expression of GC-C in the tubular epithelial cells of both the caput epididymis and cauda epididymis. Our results suggest that the GC-C signaling pathway could converge on CFTR in the epididymis and perhaps control fluid and ion balance for optimal sperm maturation and storage in this tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies specific for the modified nucleoside N6-(delta 2-isopentenyl) adenosine (i6A) were employed to identify the tRNAs containing i6A from an unfractionated tRNA mixture by a nitrocellulose filter binding assay. When radioactive aminoacyl-tRNAs were incubated with i6A-specific antibodies and filtered through nitrocellulose membrane filters, the tRNAs possessing i6A (tRNAtyr and tRNAser) remained on the filters. tRNAarg and tRNAlys which do not contain i6A showed no binding. This finding will be useful as a very simple and rapid assay of such RNAs under a variety of conditions. Purification of i6A containing tRNAs from an unfractionated tRNA mixture was achieved by affinity chromatography of the tRNAs on an i6A antibody-Sepharose column. Nonspecific binding of tRNAs to the column was avoided by the use of purified antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single chain fragment variables (ScFvs) have been extensively employed in studying the protein-protein interactions. ScFvs derived from phage display libraries have an additional advantage of being generated against a native antigen, circumventing loss of information on conformational epitopes. In the present study, an attempt has been made to elucidate human chorionic gonadotropin (hCG)-luteinizing hormone (LH) receptor interactions by using a neutral and two inhibitory ScFvs against hCG. The objective was to dock a computationally derived model of these ScFvs onto the crystal structure of hCG and understand the differential roles of the mapped epitopes in hCG-LH receptor interactions. An anti-hCG ScFv, whose epitope was mapped previously using biochemical tools, served as the positive control for assessing the quality of docking analysis. To evaluate the role of specific side chains at the hCG-ScFv interface, binding free energy as well as residue interaction energies of complexes in solution were calculated using molecular mechanics Poisson-Boltzmann/surface area method after performing the molecular dynamic simulations on the selected hCG-ScFv models and validated using biochemical and SPR analysis. The robustness of these calculations was demonstrated by comparing the theoretically determined binding energies with the experimentally obtained kinetic parameters for hCG-ScFv complexes. Superimposition of hCG-ScFv model onto a model of hCG complexed with the 51-266 residues of LH receptor revealed importance of the residues previously thought to be unimportant for hormone binding and response. This analysis provides an alternate tool for understanding the structure-function analysis of ligand-receptor interactions. Proteins 2011;79:3108-3122. (C) 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 30-d course of oral administration of a semipurified extract of the root of Withania somnifera consisting predominantly of withanolides and withanosides reversed behavioral deficits, plaque pathology, accumulation of beta-amyloid peptides (A beta) and oligomers in the brains of middle-aged and old APP/PS1 Alzheimer's disease transgenic mice. It was similarly effective in reversing behavioral deficits and plaque load in APPSwInd mice (line J20). The temporal sequence involved an increase in plasma A beta and a decrease in brain A beta monomer after 7 d, indicating increased transport of A beta from the brain to the periphery. Enhanced expression of low-density lipoprotein receptor-related protein (LRP) in brain microvessels and the A beta-degrading protease neprilysin (NEP) occurred 14-21 d after a substantial decrease in brain A beta levels. However, significant increase in liver LRP and NEP occurred much earlier, at 7 d, and were accompanied by a rise in plasma sLRP, a peripheral sink for brain A beta. In WT mice, the extract induced liver, but not brain, LRP and NEP and decreased plasma and brain A beta, indicating that increase in liver LRP and sLRP occurring independent of A beta concentration could result in clearance of A beta. Selective down-regulation of liver LRP, but not NEP, abrogated the therapeutic effects of the extract. The remarkable therapeutic effect of W. somnifera mediated through up-regulation of liver LRP indicates that targeting the periphery offers a unique mechanism for A beta clearance and reverses the behavioral deficits and pathology seen in Alzheimer's disease models.