951 resultados para RNA interference (RNAi)
Resumo:
Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments.
Resumo:
Reproductive isolation between closely related species is often incomplete. The Western honey bee, Apis mellifera, and the Eastern hive bee, A. cerana have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations – two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species-specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically-mated A. mellifera queens in either location. However A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs, or unfertilised drones. This suggests that reproductive interference will impact the viability of honey bee populations wherever A. cerana and A. mellifera are in contact. This article is protected by copyright. All rights reserved.
Resumo:
Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.
Resumo:
tRNA isolated from escherichia-coli grown in a medium containing [75Se] sodium selenosulfate was converted to nucleosides and analysed for selenonucleosides on a phosphocellulose column. Upon chromatography of the nucleosides on phosphocellulose column, the radioactivity resolved into three peaks. The first peak consisted of free selenium and traces of undigested nucleotides. The second peak was identified as 4-selenouridine by co-chromatographing with an authentic sample of 4-selenouridine. The identity of the third peak was not established. The second and third peaks represented 93% and 7% of the selenium present in nucleosides respectively.
Resumo:
Parthenium (Parthenium hysterophorus L.) is one of the most aggressive herbaceous weeds of the Asteraceae family. It is widely distributed, almost across the world and has become the most important invasive weed. Comprehensive information on interference and control of this devastating species is required to facilitate better management decisions. A broad review on the interference and management of this weed is presented here. Inspite of its non-tropical origin, parthenium grows quite successfully under a wide range of environmental conditions. It is spreading rapidly in Australia, Western Africa, Asia, and Caribbean countries, and has become a serious weed of pastures, wastelands, roadsides, railwaysides, water courses, and agricultural crops. The infestations of parthenium have been reported to reduce grain and forage yields by 40–90%. The spread of parthenium has been attributed to its allelopathic activity, strong competitiveness for soil moisture and nutrients, and its capability to exploit natural biodiversity. Allelochemicals released from parthenium has been reported to decrease germination and growth of agronomic crops, vegetables, trees, and many other weed species. Growth promoting effects of parthenium extracts at low concentrations have also been reported in certain crops. Many pre- and post-emergence herbicides have been evaluated for the control of parthenium in cropped and non-cropped areas. The most effective herbicides are clomazone, metribuzin, atrazine, glyphosate, metsulfuron methyl, butachlor, bentazone, dicamba, and metsulfuron methyl. Extracts, residues, and essential oils of many allelopathic herbs (Cassia, Amaranthus, and Xanthium species), grasses (Imperata and Desmostachya species), and trees (Eucalyptus, Azadirachta, Mangifera species, etc.) have demonstrated inhibitory activities on seed germination and seedling growth of parthenium. Metabolites of several fungi, e.g., Fusarium oxysporun and Fusarium monilifonne, exhibit bioherbicidal activity against seeds and seedlings of this weed. Intercropping, displacement by competitive plant species like Cassia species, bisset bluegrass, florgen blugress, buffelgrass, along with the use of biological control agents like Mexican beetle, seed-feeding and stem-boring weevils, stem-galling and leaf-mining moth, and sap-feeding plant hopper, have been reported as possible strategies for the management of parthenium. An appropriate integration of these approaches could help minimize spread of parthenium and provide sustainable weed management with reduced environmental concerns.
Resumo:
RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis.
Resumo:
The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.
Resumo:
tRNA isolated from . grown in a medium containing [75Se] sodium selenosulfate was converted to nucleosides and analysed for selenonucleosides on a phosphocellulose column. Upon chromatography of the nucleosides on phosphocellulose column, the radioactivity resolved into three peaks. The first peak consisted of free selenium and traces of undigested nucleotides. The second peak was identified as 4-selenouridine by co-chromatographing with an authentic sample of 4-selenouridine. The identity of the third peak was not established. The second and third peaks represented 93% and 7% of the selenium present in nucleosides respectively.
Resumo:
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.
Resumo:
The rapid uptake of transcriptomic approaches in freshwater ecology has seen a wealth of data produced concerning the ways in which organisms interact with their environment on a molecular level. Typically, such studies focus either at the community level and so don’t require species identifications, or on laboratory strains of known species identity or natural populations of large, easily identifiable taxa. For chironomids, impediments still exist for applying these technologies to natural populations because they are small-bodied and often require time-consuming secondary sorting of stream material and morphological voucher preparation to confirm species diagnosis. These procedures limit the ability to maintain RNA quantity and quality in such organisms because RNA degrades rapidly and gene expression can be altered rapidly in organisms; thereby limiting the inclusion of such taxa in transcriptomic studies. Here, we demonstrate that these limitations can be overcome and outline an optimised protocol for collecting, sorting and preserving chironomid larvae that enables retention of both morphological vouchers and RNA for subsequent transcriptomics purposes. By ensuring that sorting and voucher preparation are completed within <4 hours after collection and that samples are kept cold at all times, we successfully retained both RNA and morphological vouchers from all specimens. Although not prescriptive in specific methodology, we anticipate that this paper will assist in promoting transcriptomic investigations of the sublethal impact on chironomid gene expression of changes to aquatic environments.
Resumo:
Isolated nuclei from differentiating cultures of Nicotiana sanderae showed increased levels of RNA polymerase activity as compared to the nuclei from callus cultures. The RNA synthetic activity was dependent on nucleotide triphosphates and Mg2+ and was destroyed by RNase. Maximum activity was obtained in the presence of 50 mM (NH4)2 SO4 and α-amanitin inhibited 40% and 55% of the activity in the nuclei from callus and differentiating tissue respectively. The nuclei from differentiating tissue elicited a 3-fold increase in RNA polymerase I and a 4-fold augmentation in RNA polymerase II activities.
Resumo:
Pin joints in structures are designed for interference, push or clearance fits. That is, the diameter of the pin is made greater than, equal to or less than the hole diameter. Consider an interference fit pin in a plate subjected to a continuously increasing in-plane load.
Resumo:
Two methionyl-transfer RNA synthetases (A and B forms) have been isolated from Image . The homogeneous preparations of the enzymes showed 1500 fold increase in specific activity in aminoacylation of methionine specific tRNA. The A and B forms differed in their specificity of aminoacylation of tRNAmMet and tRNAfMet; enzyme B exhibited much higher specificity for tRNAfMet. The molecular activities of A and B enzymes for aminoacid and tRNA were identical. The turnover number for aminoacid was 27 fold greater than that for tRNA, while the Km values for tRNA were lower by a factor of 106 as compared to the aminoacid. Both the enzymes catalysed ATP-pyrophosphate exchange reaction to the same extent.
Resumo:
Effects of cochannel interference and synchronization error of the carrier phase on the probability of error in binary communications are considered. Several bounds on the probability of error are proposed. The bounds are easy to compute and do not require complete statistical characterization of the errors. They turn out to be simple linear combinations of error probabilities with no cochannel interferences and no phase errors. Several illustrative examples are given which show that the bounds can be tight.