890 resultados para RESOLVENT OF OPERATORS
Resumo:
The reliable assessment of macrophyte biomass is fundamental for ecological research and management of freshwater ecosystems. While dry mass is routinely used to determine aquatic plant biomass, wet (fresh) mass can be more practical. We tested the accuracy and precision of wet mass measurements by using a salad spinner to remove surface water from four macrophyte species differing in growth form and architectural complexity. The salad spinner aided in making precise and accurate wet mass with less than 3% error. There was also little difference between operators, with a user bias estimated to be below 5%. To achieve this level of precision, only 10–20 turns of the salad spinner are needed. Therefore, wet mass of a sample can be determined in less than 1 min. We demonstrated that a salad spinner is a rapid and economical technique to enable precise and accurate macrophyte wet mass measurements and is particularly suitable for experimental work. The method will also be useful for fieldwork in situations when sample sizes are not overly large.
Resumo:
Criteria for the L2-stability of linear and nonlinear time-varying feedback systems are given. These are conditions in the time domain involving the solution of certain associated matrix Riccati equations and permitting the use of a very general class of L2-operators as multipliers.
Resumo:
We explore the semi-classical structure of the Wigner functions ($\Psi $(q, p)) representing bound energy eigenstates $|\psi \rangle $ for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of $\Psi $ is a delta function on the f-dimensional torus to which classical trajectories corresponding to ($|\psi \rangle $) are confined in the 2f-dimensional phase space. In the semi-classical limit of ($\Psi $ ($\hslash $) small but not zero) the delta function softens to a peak of order ($\hslash ^{-\frac{2}{3}f}$) and the torus develops fringes of a characteristic 'Airy' form. Away from the torus, $\Psi $ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when ($\Psi $) is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ($\epsilon $), the system passes through three semi-classical regimes as ($\hslash $) diminishes. (b) For states ($|\psi \rangle $) associated with regions in phase space filled with irregular trajectories, ($\Psi $) will be a random function confined near that region of the 'energy shell' explored by these trajectories (this region has more than f dimensions). (c) For ($\epsilon \neq $0, $\hslash $) blurs the infinitely fine classical path structure, in contrast to the integrable case ($\epsilon $ = 0, where $\hslash $ )imposes oscillatory quantum detail on a smooth classical path structure.
Resumo:
The noted 19th century biologist, Ernst Haeckel, put forward the idea that the growth (ontogenesis) of an organism recapitulated the history of its evolutionary development. While this idea is defunct within biology, the idea has been promoted in areas such as education (the idea of an education being the repetition of the civilizations before). In the research presented in this paper, recapitulation is used as a metaphor within computer-aided design as a way of grouping together different generations of spatial layouts. In most CAD programs, a spatial layout is represented as a series of objects (lines, or boundary representations) that stand in as walls. The relationships between spaces are not usually explicitly stated. A representation using Lindenmayer Systems (originally designed for the purpose of modelling plant morphology) is put forward as a way of representing the morphology of a spatial layout. The aim of this research is not just to describe an individual layout, but to find representations that link together lineages of development. This representation can be used in generative design as a way of creating more meaningful layouts which have particular characteristics. The use of genetic operators (mutation and crossover) is also considered, making this representation suitable for use with genetic algorithms.
Resumo:
We set up Wigner distributions for N-state quantum systems following a Dirac-inspired approach. In contrast to much of the work in this study, requiring a 2N x 2N phase space, particularly when N is even, our approach is uniformly based on an N x N phase-space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both N odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the N odd case permits full implementation of the marginal property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.
Resumo:
The rheological properties of polymer melts and other complex macromolecular fluids are often successfully modeled by phenomenological constitutive equations containing fractional differential operators. We suggest a molecular basis for such fractional equations in terms of the generalized Langevin equation (GLE) that underlies the renormalized Rouse model developed by Schweizer [J. Chem. Phys. 91, 5802 (1989)]. The GLE describes the dynamics of the segments of a tagged chain under the action of random forces originating in the fast fluctuations of the surrounding polymer matrix. By representing these random forces as fractional Gaussian noise, and transforming the GLE into an equivalent diffusion equation for the density of the tagged chain segments, we obtain an analytical expression for the dynamic shear relaxation modulus G(t), which we then show decays as a power law in time. This power-law relaxation is the root of fractional viscoelastic behavior.
Resumo:
The Earth's ecosystems are protected from the dangerous part of the solar ultraviolet (UV) radiation by stratospheric ozone, which absorbs most of the harmful UV wavelengths. Severe depletion of stratospheric ozone has been observed in the Antarctic region, and to a lesser extent in the Arctic and midlatitudes. Concern about the effects of increasing UV radiation on human beings and the natural environment has led to ground based monitoring of UV radiation. In order to achieve high-quality UV time series for scientific analyses, proper quality control (QC) and quality assurance (QA) procedures have to be followed. In this work, practices of QC and QA are developed for Brewer spectroradiometers and NILU-UV multifilter radiometers, which measure in the Arctic and Antarctic regions, respectively. These practices are applicable to other UV instruments as well. The spectral features and the effect of different factors affecting UV radiation were studied for the spectral UV time series at Sodankylä. The QA of the Finnish Meteorological Institute's (FMI) two Brewer spectroradiometers included daily maintenance, laboratory characterizations, the calculation of long-term spectral responsivity, data processing and quality assessment. New methods for the cosine correction, the temperature correction and the calculation of long-term changes of spectral responsivity were developed. Reconstructed UV irradiances were used as a QA tool for spectroradiometer data. The actual cosine correction factor was found to vary between 1.08-1.12 and 1.08-1.13. The temperature characterization showed a linear temperature dependence between the instrument's internal temperature and the photon counts per cycle. Both Brewers have participated in international spectroradiometer comparisons and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002-2010. The features of the spectral UV radiation time series at Sodankylä were analysed for the time period 1990-2001. No statistically significant long-term changes in UV irradiances were found, and the results were strongly dependent on the time period studied. Ozone was the dominant factor affecting UV radiation during the springtime, whereas clouds played a more important role during the summertime. During this work, the Antarctic NILU-UV multifilter radiometer network was established by the Instituto Nacional de Meteorogía (INM) as a joint Spanish-Argentinian-Finnish cooperation project. As part of this work, the QC/QA practices of the network were developed. They included training of the operators, daily maintenance, regular lamp tests and solar comparisons with the travelling reference instrument. Drifts of up to 35% in the sensitivity of the channels of the NILU-UV multifilter radiometers were found during the first four years of operation. This work emphasized the importance of proper QC/QA, including regular lamp tests, for the multifilter radiometers also. The effect of the drifts were corrected by a method scaling the site NILU-UV channels to those of the travelling reference NILU-UV. After correction, the mean ratios of erythemally-weighted UV dose rates measured during solar comparisons between the reference NILU-UV and the site NILU-UVs were 1.007±0.011 and 1.012±0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80°. Solar comparisons between the NILU-UVs and spectroradiometers showed a ±5% difference near local noon time, which can be seen as proof of successful QC/QA procedures and transfer of irradiance scales. This work also showed that UV measurements made in the Arctic and Antarctic can be comparable with each other.
Resumo:
When heated to high temperatures, the behavior of matter changes dramatically. The standard model fields go through phase transitions, where the strongly interacting quarks and gluons are liberated from their confinement to hadrons, and the Higgs field condensate melts, restoring the electroweak symmetry. The theoretical framework for describing matter at these extreme conditions is thermal field theory, combining relativistic field theory and quantum statistical mechanics. For static observables the physics is simplified at very high temperatures, and an effective three-dimensional theory can be used instead of the full four-dimensional one via a method called dimensional reduction. In this thesis dimensional reduction is applied to two distinct problems, the pressure of electroweak theory and the screening masses of mesonic operators in quantum chromodynamics (QCD). The introductory part contains a brief review of finite-temperature field theory, dimensional reduction and the central results, while the details of the computations are contained in the original research papers. The electroweak pressure is shown to converge well to a value slightly below the ideal gas result, whereas the pressure of the full standard model is dominated by the QCD pressure with worse convergence properties. For the mesonic screening masses a small positive perturbative correction is found, and the interpretation of dimensional reduction on the fermionic sector is discussed.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.
Resumo:
Criteria for the L2-stability of linear and nonlinear time-varying feedback systems are given. These are conditions in the time domain involving the solution of certain associated matrix Riccati equations and permitting the use of a very general class of L2-operators as multipliers.
Resumo:
In this paper we shall study a fractional integral equation in an arbitrary Banach space X. We used the analytic semigroups theory of linear operators and the fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of global solution. The existence and convergence of the Faedo–Galerkin solution to the given problem is also proved in a separable Hilbert space with some additional assumptions on the operator A. Finally we give an example to illustrate the applications of the abstract results.
Resumo:
Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.
Resumo:
Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2 pi rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.