957 resultados para Quadratic polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the effect of orthokeratology on peripheral aberrations in two myopic volunteers. Methods: The subjects wore reverse geometry orthokeratology lenses overnight and were monitored for 2 weeks of wear. They underwent corneal topography, peripheral refraction (out to ±34° along the horizontal visual field) and peripheral aberration measurements across the 42° × 32° central visual field using a modified Hartmann-Shack aberrometer. Results: Spherical equivalent refraction was corrected for the central 25° of the visual fields beyond which it gradually returned to its preorthokeratology values. There were increases in axial coma, spherical aberration, higher order root mean square aberrations, and total root-mean-squared aberrations (excluding defocus). The rates of change of vertical and horizontal coma across the field changed in sign. Total root mean square aberrations showed a quadratic rate of change across the visual field which was greater subsequent to orthokeratology. Conclusion: Although orthokeratology can correct peripheral relative hypermetropia it induces dramatic increases in higher-order aberrations across the field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Dietary glycemic index (GI) and glycemic load (GL) have been associated with risk of chronic diseases, yet limited research exists on patterns of consumption in Australia. Our aims were to investigate glycemic carbohydrate in a population of older women, identify major contributing food sources, and determine low, moderate and high ranges. Methods: Subjects were 459 Brisbane women aged 42-81 years participating in the Longitudinal Assessment of Ageing in Women. Diet history interviews were used to assess usual diet and results were analysed into energy and macronutrients using the FoodWorks dietary analysis program combined with a customised GI database. Results: Mean±SD dietary GI was 55.6±4.4% and mean dietary GL was 115±25. A low GI in this population was ≤52.0, corresponding to the lowest quintile of dietary GI, and a low GL was ≤95. GI showed a quadratic relationship with age (P=0.01), with a slight decrease observed in women aged in their 60’s relative to younger or older women. GL decreased linearly with age (P<0.001). Bread was the main contributor to carbohydrate and dietary GL (17.1% and 20.8%, respectively), followed by fruit (15.5% and 14.2%), and dairy for carbohydrate (9.0%) or breakfast cereals for GL (8.9%). Conclusions: In this population, dietary GL decreased with increasing age, however this was likely to be a result of higher energy intakes in younger women. Focus on careful selection of lower GI items within bread and breakfast cereal food groups would be an effective strategy for decreasing dietary GL in this population of older women.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelling of interferometric signals related to tear film surface quality is considered. In the context of tear film surface quality estimation in normal healthy eyes, two clinical parameters are of interest: the build-up time, and the average interblink surface quality. The former is closely related to the signal derivative while the latter to the signal itself. Polynomial signal models, chosen for a particular set of noisy interferometric measurements, can be optimally selected, in some sense, with a range of information criteria such as AIC, MDL, Cp, and CME. Those criteria, however, do not always guarantee that the true derivative of the signal is accurately represented and they often overestimate it. Here, a practical method for judicious selection of model order in a polynomial fitting to a signal is proposed so that the derivative of the signal is adequately represented. The paper highlights the importance of context-based signal modelling in model order selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several approaches have been proposed to recognize handwritten Bengali characters using different curve fitting algorithms and curvature analysis. In this paper, a new algorithm (Curve-fitting Algorithm) to identify various strokes of a handwritten character is developed. The curve-fitting algorithm helps recognizing various strokes of different patterns (line, quadratic curve) precisely. This reduces the error elimination burden heavily. Implementation of this Modified Syntactic Method demonstrates significant improvement in the recognition of Bengali handwritten characters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To measure the influence of spherical intraocular lens implantation and conventional myopic laser in situ keratomileusis on peripheral ocular aberrations. Setting: Visual & Ophthalmic Optics Laboratory, School of Optometry & Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. Methods: Peripheral aberrations were measured using a modified commercial Hartmann-Shack aberrometer across 42° x 32° of the central visual field in 6 subjects after spherical intraocular lens (IOL) implantation and in 6 subjects after conventional laser in situ keratomileusis (LASIK) for myopia. The results were compared with those of age matched emmetropic and myopic control groups. Results: The IOL group showed a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, and greater rates of change of higher-order root-mean-square aberrations and total root-mean-square aberrations across the visual field than its emmetropic control group. However, coma trends were similar for the two groups. The LASIK group had a greater rate of quadratic change of spherical equivalent refraction across the visual field, higher spherical aberration, the opposite trend in coma across the field, and greater higher-order root-mean-square aberrations and total root-mean-square aberrations than its myopic control group. Conclusion: Spherical IOL implantation and conventional myopia LASIK increase ocular peripheral aberrations. They cause considerable increase in spherical aberration across the visual field. LASIK reverses the sign of the rate of change in coma across the field relative to that of the other groups. Keywords: refractive surgery, LASIK, IOL implantation, aberrations, peripheral aberrations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presents a unified and systematic assessment of ten position control strategies for a hydraulic servo system with single-ended cylinder driven by a proportional directional control valve. We aim at identifying those methods that achieve better tracking, have a low sensitivity to system uncertainties, and offer a good balance between development effort and end results. A formal approach for solving this problem relies on several practical metrics, which is introduced herein. Their choice is important, as the comparison results between controllers can vary significantly, depending on the selected criterion. Apart from the quantitative assessment, we also raise aspects which are difficult to quantify, but which must stay in attention when considering the position control problem for this class of hydraulic servo systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, most applications of algebraic analysis and attacks on stream ciphers are on those based on lin- ear feedback shift registers (LFSRs). In this paper, we extend algebraic analysis to non-LFSR based stream ciphers. Specifically, we perform an algebraic analysis on the RC4 family of stream ciphers, an example of stream ciphers based on dynamic tables, and inves- tigate its implications to potential algebraic attacks on the cipher. This is, to our knowledge, the first pa- per that evaluates the security of RC4 against alge- braic attacks through providing a full set of equations that describe the complex word manipulations in the system. For an arbitrary word size, we derive alge- braic representations for the three main operations used in RC4, namely state extraction, word addition and state permutation. Equations relating the inter- nal states and keystream of RC4 are then obtained from each component of the cipher based on these al- gebraic representations, and analysed in terms of their contributions to the security of RC4 against algebraic attacks. Interestingly, it is shown that each of the three main operations contained in the components has its own unique algebraic properties, and when their respective equations are combined, the resulting system becomes infeasible to solve. This results in a high level of security being achieved by RC4 against algebraic attacks. On the other hand, the removal of an operation from the cipher could compromise this security. Experiments on reduced versions of RC4 have been performed, which confirms the validity of our algebraic analysis and the conclusion that the full RC4 stream cipher seems to be immune to algebraic attacks at present.