887 resultados para Quadratic inequalities
Resumo:
Introduction Among the many requirements of establishing community health, a healthy urban environment stands out as significant one. A healthy urban environment constantly changes and improves community well-being and expands community resources. The promotion efforts for such an environment, therefore, must include the creation of structures and processes that actively work to dismantle existing community inequalities. In general, these processes are hard to manage; therefore, they require reliable planning and decision support systems. Current and previous practices justify that the use of decision support systems in planning for healthy communities have significant impacts on the communities. These impacts include but are not limited to: increasing collaboration between stakeholders and the general public; improving the accuracy and quality of the decision making process; enhancing healthcare services; and improving data and information availability for health decision makers and service planners. Considering the above stated reasons, this study investigates the challenges and opportunities of planning for healthy communities with the specific aim of examining the effectiveness of participatory planning and decision systems in supporting the planning for such communities. Methods This study introduces a recently developed methodology, which is based on an online participatory decision support system. This new decision support system contributes to solve environmental and community health problems, and to plan for healthy communities. The system also provides a powerful and effective platform for stakeholders and interested members of the community to establish an empowered society and a transparent and participatory decision making environment. Results The paper discusses the preliminary findings from the literature review of this decision support system in a case study of Logan City, Queensland. Conclusion The paper concludes with future research directions and applicability of this decision support system in health service planning elsewhere.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
Young people are arguably facing more ‘complex and contested’ transitions to adulthood and an increasing array of ‘non-linear’ paths. Education and training have been extended, identity is increasingly shaped through leisure and consumerism and youth must navigate their life trajectories in highly individualised ways. The study utilises 819 short essays compiled by students aged 14–16 years from 19 schools in Australia. It examines how young people understand their own unique positions and the possibilities open to them through their aspirations and future orientations to employment and family life. These young people do not anticipate postponing work identities, but rather embrace post-school options such as gaining qualifications, work experience and achieving financial security. Boys expected a distant involvement in family life secondary to participation in paid work. In contrast, around half the girls simultaneously expected a future involving primary care-giving and an autonomous, independent career, suggesting attempts to remake gendered inequalities
Resumo:
Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary
Resumo:
In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.
Resumo:
We propose new bounds on the error of learning algorithms in terms of a data-dependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.
Resumo:
We consider the problem of structured classification, where the task is to predict a label y from an input x, and y has meaningful internal structure. Our framework includes supervised training of Markov random fields and weighted context-free grammars as special cases. We describe an algorithm that solves the large-margin optimization problem defined in [12], using an exponential-family (Gibbs distribution) representation of structured objects. The algorithm is efficient—even in cases where the number of labels y is exponential in size—provided that certain expectations under Gibbs distributions can be calculated efficiently. The method for structured labels relies on a more general result, specifically the application of exponentiated gradient updates [7, 8] to quadratic programs.
Resumo:
Background: Achieving health equity has been identified as a major challenge, both internationally and within Australia. Inequalities in cancer outcomes are well documented, and must be quantified before they can be addressed. One method of portraying geographical variation in data uses maps. Recently we have produced thematic maps showing the geographical variation in cancer incidence and survival across Queensland, Australia. This article documents the decisions and rationale used in producing these maps, with the aim to assist others in producing chronic disease atlases. Methods: Bayesian hierarchical models were used to produce the estimates. Justification for the cancers chosen, geographical areas used, modelling method, outcome measures mapped, production of the adjacency matrix, assessment of convergence, sensitivity analyses performed and determination of significant geographical variation is provided. Conclusions: Although careful consideration of many issues is required, chronic disease atlases are a useful tool for assessing and quantifying geographical inequalities. In addition they help focus research efforts to investigate why the observed inequalities exist, which in turn inform advocacy, policy, support and education programs designed to reduce these inequalities.
Resumo:
The explanation of social inequalities in education is still a debated issue in economics. Recent empirical studies tend to downplay the potential role of credit constraint. This article tests a different potential explanation of social inequalities in education, specifically that social differences in aspiration level result in different educational choices. Having existed for a long time in the sociology of education, this explanation can be justified if aspiration levels are seen as reference points in a prospect theory framework. In order to test this explanation, this article applies the method of experimental economics to the issue of education choice and behaviour. One hundred and twenty-nine individuals participated in an experiment in which they had to perform a task over 15 stages grouped in three blocks or levels. In order to continue through the experiment, a minimum level of success was required at the end of each level. Rewards were dependent on the final level successfully reached. At the end of each level, participants could either choose to stop and take their reward or to pay a cost to continue further in order to possibly receive higher rewards. To test the impact of aspiration levels, outcomes were either presented as gains or losses relative to an initial sum. In accordance with the theoretical predictions, participants in the loss framing group choose to go further in the experiment. There was also a significant and interesting gender effect in the loss framing treatment, such that males performed better and reached higher levels.
Resumo:
Background Oxidative stress plays a role in acute and chronic inflammatory disease and antioxidant supplementation has demonstrated beneficial effects in the treatment of these conditions. This study was designed to determine the optimal dose of an antioxidant supplement in healthy volunteers to inform a Phase 3 clinical trial. Methods The study was designed as a combined Phase 1 and 2 open label, forced titration dose response study in healthy volunteers (n = 21) to determine both acute safety and efficacy. Participants received a dietary supplement in a forced titration over five weeks commencing with a no treatment baseline through 1, 2, 4 and 8 capsules. The primary outcome measurement was ex vivo changes in serum oxygen radical absorbance capacity (ORAC). The secondary outcome measures were undertaken as an exploratory investigation of immune function. Results A significant increase in antioxidant activity (serum ORAC) was observed between baseline (no capsules) and the highest dose of 8 capsules per day (p = 0.040) representing a change of 36.6%. A quadratic function for dose levels was fitted in order to estimate a dose response curve for estimating the optimal dose. The quadratic component of the curve was significant (p = 0.047), with predicted serum ORAC scores increasing from the zero dose to a maximum at a predicted dose of 4.7 capsules per day and decreasing for higher doses. Among the secondary outcome measures, a significant dose effect was observed on phagocytosis of granulocytes, and a significant increase was also observed on Cox 2 expression. Conclusion This study suggests that Ambrotose AO® capsules appear to be safe and most effective at a dosage of 4 capsules/day. It is important that this study is not over interpreted; it aimed to find an optimal dose to assess the dietary supplement using a more rigorous clinical trial design. The study achieved this aim and demonstrated that the dietary supplement has the potential to increase antioxidant activity. The most significant limitation of this study was that it was open label Phase 1/Phase 2 trial and is subject to potential bias that is reduced with the use of randomization and blinding. To confirm the benefits of this dietary supplement these effects now need to be demonstrated in a Phase 3 randomised controlled trial (RCT).
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
Resumo:
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.