995 resultados para QUANTUM-WELL WIRES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We clarify the extra signs appearing in the graded quantum Yang-Baxter reflection equations, when they are written in a matrix form. We find the boundary K-matrix for the Perk-Schultz six-vertex model, thus give a general solution to the graded reflection equation associated with it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity field. We also discuss the possibility of applying these methods for decoherence control in quantum information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate in detail the effects of a QND vibrational number measurement made on single ions in a recently proposed measurement scheme for the vibrational state of a register of ions in a linear rf trap [C. D'HELON and G. J. MILBURN, Phys Rev. A 54, 5141 (1996)]. The performance of a measurement shows some interesting patterns which are closely related to searching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the realization of the super-Reshetikhin-Semenov-Tian-Shansky (RS) algebra in quantum affine superalgebras, thus generalizing the approach of Frenkel and Reshetikhin to the supersymmetric (and twisted) case. The algebraic homomorphism between the super-RS algebra and the Drinfeld current realization of quantum affine superalgebras is established by using the Gauss decomposition technique of Ding and Frenkel. As an application, we obtain Drinfeld realization of quantum affine superalgebra U-q [osp(1/2)((1))] and its degeneration - central extended super-Yangian double DY(h over bar) [osp(1/2)((1))].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum integrability is established for the one-dimensional supersymmetric U model with boundary terms by means of the quantum inverse-scattering method. The boundary supersymmetric U chain is solved by using the coordinate-space Bethe-ansatz technique and Bethe-ansatz equations are derived. This provides us with a basis for computing the finite-size corrections to the low-lying energies in the system. [S0163-1829(98)00425-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the parametric quantum field theory involving cubic and quartic couplings of two bosonic fields. This is exactly soluble for the two-particle energy eigenstates (or quantum solitons) in one, two, and three space dimensions. We estimate the binding energies and corresponding radii in the case of photonic fields in nonlinear optical materials, and Bose-Einstein condensates. [S1050-2947(98)51110-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some interesting connections between the theory of quantum computation and quantum measurement. As an illustration, we present a scheme in which an ion trap quantum computer can be used to make arbitrarily accurate measurements of the quadrature phase variables for the collective vibrational motion of the ion. We also discuss some more general aspects of quantum computation and measurement in terms of the Feynman-Deutsch principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simulation of stochastic partial differential equations obtained using phase-space representations. We derive evolution equations for a single trapped condensate in both the positive-P and Wigner representations and perform simulations to compare the predictions of the two methods. The positive-P approach is found to be highly susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from a variety of choices of initial stare for the condensate and compare results to those for single-mode models. [S1050-2947(98)06612-8].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In his study of the 'time of arrival' problem in the nonrelativistic quantum mechanics of a single particle, Allcock [1] noted that the direction of the probability flux vector is not necessarily the same as that of the mean momentum of a wave packet, even when the packet is composed entirely of plane waves with a common direction of momentum. Packets can be constructed, for example for a particle moving under a constant force, in which probability flows for a finite time in the opposite direction to the momentum. A similar phenomenon occurs for the Dirac electron. The maximum amount of probabilitiy backflow which can occur over a given time interval can be calculated in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the light of Project MATCH, is it reasonable to accept the null hypothesis that there are no clinically signi® cant matching effects between patient characteristics and cognitive± behaviour therapy (CBT), motivational enhancement therapy (MET) and Twelve-Step facilitation therapy (TSF)? The Project MATCH investigators considered the null hypothesis but preferred the alternative hypothesis that further analysis may reveal combinations of patient and therapist characteristics that show more substantial matching effects than any of the variables that they have examined to date.1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse held. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique (RSRGDT). If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition (from a ferromagnet in the x direction to a ferromagnet in the y direction) is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse held then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRODT and numerical work. [S0163-1829(99)07125-8].