917 resultados para Puberty in lymphoblastic leukemia
Resumo:
Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of current techniques for generating leukemia-reactive CTLs from unprimed healthy donors in vitro. In this work, a novel allogeneic mini-mixed lymphocyte/leukemia culture (mini-MLLC) approach was established by stimulating CD8+ T cells isolated from peripheral blood of healthy donors at comparably low numbers (i.e. 10e4/well) with HLA class I-matched primary AML blasts in 96-well microtiter plates. Before culture, CD8+ T cells were immunomagnetically separated into CD62L(high)+ and CD62L(low)+/neg subsets enriched for naive/central memory and effector memory cells, respectively. The application of 96-well microtiter plates aimed at creating multiple different responder-stimulator cell compositions in order to provide for the growth of leukemia-reactive CTLs optimized culture conditions by chance. The culture medium was supplemented with interleukin (IL)-7, IL-12, and IL-15. On day 14, IL-12 was replaced by IL-2. In eight different related and unrelated donor/AML pairs with complete HLA class I match, numerous CTL populations were isolated that specifically lysed myeloid leukemias in association with various HLA-A, -B, or -C alleles. These CTLs recognized neither lymphoblastoid B cell lines of donor and patient origin nor primary B cell leukemias expressing the corresponding HLA restriction element. CTLs expressed T cell receptors of single V-beta chain families, indicating their clonality. The vast majority of CTL clones were obtained from mini-MLLCs initiated with CD8+ CD62L(high)+ cells. Using antigen-specific stimulation, multiple CTL populations were amplified to 10e8-10e10 cells within six to eight weeks. The capability of mini-MLLC derived AML-reactive CTL clones to inhibit the engraftment of human primary AML blasts was investigated in the immunodeficient nonobese diabetic/severe combined immune deficient IL-2 receptor common γ-chain deficient (NOD/SCID IL2Rγnull) mouse model. The leukemic engraftment in NOD/SCID IL2Rγnull was specifically prevented if inoculated AML blasts had been pre-incubated in vitro with AML-reactive CTLs, but not with anti-melanoma control CTLs. These results demonstrate that myeloid leukemia-specific CTL clones capable of preventing AML engraftment in mice can be rapidly isolated from CD8+ CD62L(high)+ T cells of healthy donors in vitro. The efficient generation and expansion of these CTLs by the newly established mini-MLLC approach opens the door for several potential applications. First, CTLs can be used within T cell-driven antigen identification strategies to extend the panel of molecularly defined AML antigens that are recognizable by T cells of healthy donors. Second, because these CTLs can be isolated from the stem cell donor by mini-MLLC prior to transplantation, they could be infused into AML patients as a part of the stem cell allograft, or early after transplantation when the leukemia burden is low. The capability of these T cells to expand and function in vivo might require the simultaneous administration of AML-reactive CD4+ T cells generated by a similar in vitro strategy or, less complex, the co-transfer of CD8-depleted donor lymphocytes. To prepare clinical testing, the mini-MLLC approach should now be translated into a protocol that is compatible with good manufacturing practice guidelines.
Resumo:
Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.
Resumo:
In Leukemias, recent developments have demonstrated that the Hedgehog pathway plays a key-role in the peculiar ability of self renewal of leukemia stem cells. The aim of this research activity was to investigate, through a first in man, Phase I, open label, clinical trial, the role and the impact, mainly in terms of safety profile, adverse events and pharmacokinetics, of a Sonic Hedgehog inhibitor compound on a population of heavely pretreated patients affected by AML, CML, MF, or MDS, resistant or refractory to standard chemotherapy. Thirty-five patients have been enrolled. The drug was administered orally, in 28 days cycles, without rest periods. The compound showed a good safety profile. The half life was of 17-35 hours, justifying the daily administration. Significant signs of activity, in terms of reduction of bone marrow blast cell amount were seen in most of the patients enrolled. Interestingly, correlative biological studies demonstrated that, comparing the gene expression profyiling signature of separated CD34+ cells before and after one cycle of treatment, the most variably expressed genes were involved in the Hh pathway. Moreover, we observed that many genes involved in MDR (multidrug resistance)were significantly down regulated after treatment. These data might lead to future clinical trials based on combinatory approaches, including, for instance, Hh inhibitors and conventional chemotherapy.
Resumo:
The chronic myeloid leukemia complexity and the difficulties of disease eradication have recently led to the development of drugs which, together with the inhibitors of TK, could eliminate leukemia stem cells preventing the occurrence of relapses in patients undergoing transplantation. The Hedgehog (Hh) signaling pathway positively regulates the self-renewal and the maintenance of leukemic stem cells and not, and this function is evolutionarily conserved. Using Drosophila as a model, we studied the efficacy of the SMO inhibitor drug that inhibit the human protein Smoothened (SMO). SMO is a crucial component in the signal transduction of Hh and its blockade in mammals leads to a reduction in the disease induction. Here we show that administration of the SMO inhibitor to animals has a specific effect directed against the Drosophila ortholog protein, causing loss of quiescence and hematopoietic precursors mobilization. The SMO inhibitor induces in L3 larvae the appearance of melanotic nodules generated as response by Drosophila immune system to the increase of its hemocytes. The same phenotype is induced even by the dsRNA:SMO specific expression in hematopoietic precursors of the lymph gland. The drug action is also confirmed at cellular level. The study of molecular markers has allowed us to demonstrate that SMO inhibitor leads to a reduction of the quiescent precursors and to an increase of the differentiated cells. Moreover administering the inhibitor to heterozygous for a null allele of Smo, we observe a significant increase in the phenotype penetrance compared to administration to wild type animals. This helps to confirm the specific effect of the drug itself. These data taken together indicate that the study of inhibitors of Smo in Drosophila can represent a useful way to dissect their action mechanism at the molecular-genetic level in order to collect information applicable to the studies of the disease in humans.
Resumo:
Pediatric acute myeloid leukemia (AML) is a molecularly heterogeneous disease that arises from genetic alterations in pathways that regulate self-renewal and myeloid differentiation. While the majority of patients carry recurrent chromosomal translocations, almost 20% of childhood AML do not show any recognizable cytogenetic alteration and are defined as cytogenetically normal (CN)-AML. CN-AML patients have always showed a great variability in response to therapy and overall outcome, underlining the presence of unknown genetic changes, not detectable by conventional analyses, but relevant for pathogenesis, and outcome of AML. The development of novel genome-wide techniques such as next-generation sequencing, have tremendously improved our ability to interrogate the cancer genome. Based on this background, the aim of this research study was to investigate the mutational landscape of pediatric CN-AML patients negative for all the currently known somatic mutations reported in AML through whole-transcriptome sequencing (RNA-seq). RNA-seq performed on diagnostic leukemic blasts from 19 pediatric CN-AML cases revealed a considerable incidence of cryptic chromosomal rearrangements, with the identification of 21 putative fusion genes. Several of the fusion genes that were identified in this study are recurrent and might have a prognostic and/or therapeutic relevance. A paradigm of that is the CBFA2T3-GLIS2 fusion, which has been demonstrated to be a common alteration in pediatric CN-AML, predicting poor outcome. Important findings have been also obtained in the identification of novel therapeutic targets. On one side, the identification of NUP98-JARID1A fusion suggests the use of disulfiram; on the other, here we describe alteration-activating tyrosine kinases, providing functional data supporting the use of tyrosine kinase inhibitors to specifically inhibit leukemia cells. This study provides new insights in the knowledge of genetic alterations underlying pediatric AML, defines novel prognostic markers and putative therapeutic targets, and prospectively ensures a correct risk stratification and risk-adapted therapy also for the “all-neg” AML subgroup.
Resumo:
Acute myeloid leukemia (AML) is a very aggressive cancer of the hematopoietic system. Chemotherapy and immunotherapeutical approaches including hematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) are the only curative options available. The beneficial graft-versus-leukemia (GVL) effect of cellular immunotherapy is mostly mediated by donor-derived CD8+ T lymphocytes that recognize minor histocompatibility antigens (mHags) and leukemia-associated antigens (LAAs) presented on the surface of AML blasts (Falkenburg et al. 2008; Kolb 2008). A main complication is graft-versus-host disease (GVHD) that can be induced when cytotoxic T lymphocytes (CTLs) recognize broadly expressed antigens. To reduce the risk of GVHD, specific allogeneic T-cell therapy inducing selective GVL responses could be an option (Barrett & Le Blanc 2010; Parmar et al. 2011; Smits et al. 2011). This requires efficient in vitro strategies to generate AML-reactive T cells with an early differentiation phenotype as well as vigorous effector functions and humanized mouse models to analyze the anti-leukemic potential of adoptively transferred T cells in vivo. In this study, AML-reactive CTL clones and oligoclonal T-cell lines could be reliably generated from the naive subset of healthy HLA-class I-identical donors by stimulation with primary AML blasts in mini-mixed-lymphocyte / leukemia cultures (MLLCs) in eight different patient / donor pairs. These CTLs were promising candidates for cellular immunotherapy because of their relatively early differentiation phenotype and strong proliferative and lytic capabilities. The addition of the common γ-chain cytokine IL-21 to the stimulation protocol enabled more precursors to develop into potent leukemia-reactive CTLs, presumably by its beneficial effects on cell survival and antigen-specific proliferation during the first weeks of cultures. It also strengthened the early-stage phenotype. Three long-term cultured CTLs exemplarily transferred into leukemia-engrafted immunodeficient NSG mice mediated a significant reduction of the leukemic burden after a single transfusion. These results demonstrate that CTL clones with reactivity to patient-derived AML blasts can be isolated from the naive compartment of healthy donors and show potent anti-leukemic effects in vivo. The herein described allo-MLLC approach with in vitro “programmed” naive CTL precursors independent of a HSCT setting is a valuable alternative to the conventional method of isolating in vivo primed donor CTLs out of patients after transplantation (Kloosterboer et al. 2004; Warren et al. 2010). This would make leukemia-reactive CTLs already available at the time point of HSCT, when residual leukemia disease is minimal and the chances for complete leukemia eradication are high. Furthermore, leukemia-reactive CTLs effectively expanded by this in vitro protocol can be used as screening populations to identify novel candidate LAAs and mHags for antigen-specific immunotherapy.
Resumo:
Expression of N-myc downregulated gene 1 (NDRG1) is associated with growth arrest and differentiation of tumor cells. In hematopoietic cells, NDRG1 was identified in a screen for differentiation-related genes in human myelomonocytic leukemic U937 cells. In the present study, we found significantly higher NDRG1 mRNA levels in granulocytes of healthy donors than in primary acute myeloid leukemia (AML) cells. Another NDRG family member, NDRG2, was significantly higher expressed in normal macrophages compared to primary AML cells. Moreover, NDRG1 mRNA levels increased in two acute promyelocytic leukemia (APL) patients as well as in NB4 and HT93 APL cells upon all-trans retinoic acid (ATRA) therapy. In line with these observations, silencing of NDRG1 diminished neutrophil differentiation of leukemic cell lines. In conclusion, we found an association of low NDRG1 levels with an immature cell phenotype and provide evidence that NDRG1 is functionally involved in neutrophil maturation.
Resumo:
This phase II trial investigated rituximab and cladribine in chronic lymphocytic leukemia. Four induction cycles, comprising cladribine (0.1 mg/kg/day days 1-5, cycles 1-4) and rituximab (375 mg/m(2) day 1, cycles 2-4), were given every 28 days. Stem cell mobilization (rituximab 375 mg/m(2) days 1 and 8; cyclophosphamide 4 g/m(2) day 2; and granulocyte colony-stimulating factor 10 microg/kg/day, from day 4) was performed in responders. Of 42 patients, nine achieved complete remission (CR), 15 very good partial remission, and two nodular partial remission (overall response rate 62%). Stem cell mobilization and harvesting (> or = 2 x 10(6) stem cells/kg body weight) were successful in 12 of 20 patients. Rituximab infusion-related adverse events were moderate. The main grade 3/4 adverse events during induction were neutropenia and lymphocytopenia. Rituximab plus cladribine was effective; however, the CR rate was modest and stem cell harvest was impaired in a large number of responding patients.
Resumo:
We describe here a new reversed-phase high-performance liquid chromatography with mass spectrometry detection method for quantifying intact cytokinin nucleotides in human K-562 leukemia cells. Tandem mass spectrometry was used to identify the intracellular metabolites (cytokinin monophosphorylated, diphosphorylated, and triphosphorylated nucleotides) in riboside-treated cells. For the protein precipitation and sample preparation, a trichloroacetic acid extraction method is used. Samples are then back-extracted with diethyl ether, lyophilized, reconstituted, and injected into the LC system. Analytes were quantified in negative selected ion monitoring mode using a single quadrupole mass spectrometer. The method was validated in terms of retention time stabilities, limits of detection, linearity, recovery, and analytical accuracy. The developed method was linear in the range of 1-1,000 pmol for all studied compounds. The limits of detection for the analytes vary from 0.2 to 0.6 pmol.
Resumo:
The known participation of Kruppel-like transcription factors (KLF) in cellular differentiation prompted us to investigate their expression in acute myeloid leukemia (AML) blast cells that are typically blocked in their differentiation. We determined the expression patterns of KLFs with a putative role in myeloid differentiation in a large cohort of primary AML patient samples, CD34+ progenitor cells and granulocytes from healthy donors. We found that KLF2, KLF3, KLF5 and KLF6 are significantly lower expressed in AML blast and CD34+ progenitor cells as compared to normal granulocytes. Moreover, we found markedly increased KLF levels in acute promyelocytic leukemia patients who received oral ATRA. Accordingly, we observed a strong induction of KLF5/6 upon ATRA-treatment in NB4 and HT93 APL but not in ATRA-resistant NB4-R cells. Lastly, knocking down KLF5 or KLF6 in NB4 cells significantly attenuated neutrophil differentiation. In conclusion, we found a significant repression of KLF transcription factors in primary AML samples as compared to mature neutrophils and further show that KLF5 and KLF6 are functionally involved in neutrophil differentiation of APL cells.
Resumo:
The clinical value of chemotherapy sensitization of acute myeloid leukemia (AML) with G-CSF priming has remained controversial. Cytarabine is a key constituent of remission induction chemotherapy. The effect of G-CSF priming has not been investigated in relationship with variable dose levels of cytarabine. We randomized 917 AML patients to receive G-CSF (456 patients) or no G-CSF (461 patients) at the days of chemotherapy. In the initial part of the study, 406 patients were also randomized between 2 cytarabine regimens comparing conventional-dose (199 patients) versus escalated-dose (207 patients) cytarabine in cycles 1 and 2. We found that patients after induction chemotherapy plus G-CSF had similar overall survival (43% vs 40%, P = .88), event-free survival (37% vs 31%, P = .29), and relapse rates (34% vs 36%, P = .77) at 5 years as those not receiving G-CSF. However, patients treated with the escalated-dose cytarabine regimen benefited from G-CSF priming, with improved event-free survival (P = .01) and overall survival (P = .003), compared with patients without G-CSF undergoing escalated-dose cytarabine treatment. A significant survival advantage of sensitizing AML for chemotherapy with G-CSF was not apparent in the entire study group, but it was seen in patients treated with escalated-dose cytarabine during remission induction. The HOVON-42 study is registered under The Netherlands Trial Registry (www.trialregister.nl) as #NTR230.
Resumo:
There is accumulating evidence for the involvement of the unfolded protein response (UPR) in the pathogenesis of many tumor types in humans. This is particularly the case in rapidly growing solid tumors in which the demand for oxygen and nutrients can exceed the supply until new tumor-initiated blood vessels are formed. In contrast, the role of the UPR during leukemogenesis remains largely unknown. Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of somatic mutations in hematopoietic progenitor cells that alter the physiological regulation of self-renewal, survival, proliferation, or differentiation. The CCAAT/enhancer-binding protein alpha (CEBPA) gene is a key myeloid transcription factor and a frequent target for disruption in AML. In particular, translation of CEBPA mRNA can be specifically blocked by binding of the chaperone calreticulin (CALR), a well-established effector of the UPR, to a stem loop structure within the 5' region of the CEBPA mRNA. The relevance of this mechanism was first elucidated in certain AML subtypes carrying the gene rearrangements t(3;21) or inv(16). In our recent work, we could demonstrate the induction of key effectors of the UPR in leukemic cells of AML patients comprising all subtypes (according to the French-American-British (FAB) classification for human AML). The formation of the spliced variant of the X-box binding protein (XBP1s) was detectable in 17.4% (17 of 105) of AML patients. Consistent with an activated UPR, this group had significantly increased expression of the UPR target genes CALR, the 78 kDa glucose-regulated protein (GRP78), and the CCAAT/enhancer-binding protein homologous protein (CHOP). Consistently, in vitro studies confirmed that calreticulin expression was upregulated via activation of the ATF6 pathway in myeloid leukemic cells. As a consequence, CEBPA protein expression was inhibited in vitro as well as in leukemic cells from patients with activated UPR. We therefore propose a model of the UPR being involved in leukemogenesis through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation and cell-cycle deregulation which represent key features of the leukemic phenotype. From a more clinical point of view, the presence of activated UPR in AML patient samples was found to be associated with a favorable disease course.
Resumo:
In patients with acute myelogenous leukemia, published guidelines and treatment recommendations are usually the basis for starting the work-up process for allogeneic transplant. However, only consistent recommendations would allow a standardized clinical practice. We conducted a comprehensive systematic literature search to identify and evaluate the best available evidence from controlled clinical trials. In addition, recommendations given by leading organizations in the USA and Europe were analyzed. The following aspects were selected for systematic comparison: factors for risk assessment and categorization, role of type of donor, significance of allogeneic transplant in first or second complete remission and in relapse/progressive disease; and role of reduced intensity conditioning regimens. In conclusion, the recommendations for the use of allogeneic transplant given by the literature and by published guidelines are inconsistent and will need clarification.