865 resultados para Pseudo-population bootstrap approach
Resumo:
More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^
Resumo:
The need for timely population data for health planning and Indicators of need has Increased the demand for population estimates. The data required to produce estimates is difficult to obtain and the process is time consuming. Estimation methods that require less effort and fewer data are needed. The structure preserving estimator (SPREE) is a promising technique not previously used to estimate county population characteristics. This study first uses traditional regression estimation techniques to produce estimates of county population totals. Then the structure preserving estimator, using the results produced in the first phase as constraints, is evaluated.^ Regression methods are among the most frequently used demographic methods for estimating populations. These methods use symptomatic indicators to predict population change. This research evaluates three regression methods to determine which will produce the best estimates based on the 1970 to 1980 indicators of population change. Strategies for stratifying data to improve the ability of the methods to predict change were tested. Difference-correlation using PMSA strata produced the equation which fit the data the best. Regression diagnostics were used to evaluate the residuals.^ The second phase of this study is to evaluate use of the structure preserving estimator in making estimates of population characteristics. The SPREE estimation approach uses existing data (the association structure) to establish the relationship between the variable of interest and the associated variable(s) at the county level. Marginals at the state level (the allocation structure) supply the current relationship between the variables. The full allocation structure model uses current estimates of county population totals to limit the magnitude of county estimates. The limited full allocation structure model has no constraints on county size. The 1970 county census age - gender population provides the association structure, the allocation structure is the 1980 state age - gender distribution.^ The full allocation model produces good estimates of the 1980 county age - gender populations. An unanticipated finding of this research is that the limited full allocation model produces estimates of county population totals that are superior to those produced by the regression methods. The full allocation model is used to produce estimates of 1986 county population characteristics. ^
Resumo:
Coronary perfusion with thrombolytic therapy and selective reperfusion by percutaneous transluminal coronary angioplasty (PTCA) were examined in the Corpus Christi Heart Project, a population-based surveillance program for hospitalized acute myocardial infarction (MI) patients in a biethnic community of Mexican-Americans (MAs) and non-Hispanic whites (NHWs). Results were based on 250 (12.4%) patients who received thromobolytic therapy in a cohort of 2011 acute MI cases. Out of these 107 (42.8%) underwent PTCA with a mean follow-up of 25 months. There were 186 (74.4%) men and 64 (25.6%) women; 148 (59.2%) were NHWs, 86 (34.4%) were MAs. Thrombolysis and PTCA were performed less frequently in women than in men, and less frequently in MAs than in NHWs.^ According to the coronary reperfusion interventions used, patients were divided in two groups, those that received no-PTCA (57.2%) and the other that underwent PTCA (42.8%) after thrombolysis. The case-fatality rate was higher in no-PTCA patients than in the PTCA (7.7% versus 5.6%), as was mortality at one year (16.2% versus 10.5%). Reperfusion was successful in 48.0% in the entire cohort and (51.4% versus 45.6%) in the PTCA and no-PTCA groups. Mortality in the successful reperfusion patients was 5.0% compared to 22.3% in the unsuccessful reperfusion group (p = 0.00016, 95% CI: 1.98-11.6).^ Cardiac catheterization was performed in 86.4% thrombolytic patients. Severe stenosis ($>$75%) obstruction was present most commonly in the left descending artery (52.8%) and in the right coronary artery (52.8%). The occurrence of adverse in-hospital clinical events was higher in the no-PTCA as compared to the PTCA and catheterized patients with the exception of reperfusion arrythmias (p = 0.140; Fisher's exact test p = 0.129).^ Cox regression analysis was used to study the relationship between selected variables and mortality. Apart from successful reperfusion, age group (p = 0.028, 95% CI: 2.1-12.42), site of acute MI index (p = 0.050) and ejection-fraction (p = 0.052) were predictors of long-term survival. The ejection-fraction in the PTCA group was higher than (median 78% versus 53%) in the no-PTCA group. Assessed by logistic regression analysis history of high cholesterol ($>$200mg/dl) and diabetes mellites did have significant prognostic value (p = 0.0233; p = 0.0318) in long-term survival irrespective of treatment status.^ In conclusion, the results of this study support the idea that the use of PTCA as a selective intervention following thrombolysis improves survival of patients with acute MI. The use of PTCA in this setting appears to be safe. However, we can not exclude the possibility that some of these results may have occurred due to the exclusion from PTCA of high risk patients (selection bias). ^
Resumo:
A life table methodology was developed which estimates the expected remaining Army service time and the expected remaining Army sick time by years of service for the United States Army population. A measure of illness impact was defined as the ratio of expected remaining Army sick time to the expected remaining Army service time. The variances of the resulting estimators were developed on the basis of current data. The theory of partial and complete competing risks was considered for each type of decrement (death, administrative separation, and medical separation) and for the causes of sick time.^ The methodology was applied to world-wide U.S. Army data for calendar year 1978. A total of 669,493 enlisted personnel and 97,704 officers were reported on active duty as of 30 September 1978. During calendar year 1978, the Army Medical Department reported 114,647 inpatient discharges and 1,767,146 sick days. Although the methodology is completely general with respect to the definition of sick time, only sick time associated with an inpatient episode was considered in this study.^ Since the temporal measure was years of Army service, an age-adjusting process was applied to the life tables for comparative purposes. Analyses were conducted by rank (enlisted and officer), race and sex, and were based on the ratio of expected remaining Army sick time to expected remaining Army service time. Seventeen major diagnostic groups, classified by the Eighth Revision, International Classification of Diseases, Adapted for Use In The United States, were ranked according to their cumulative (across years of service) contribution to expected remaining sick time.^ The study results indicated that enlisted personnel tend to have more expected hospital-associated sick time relative to their expected Army service time than officers. Non-white officers generally have more expected sick time relative to their expected Army service time than white officers. This racial differential was not supported within the enlisted population. Females tend to have more expected sick time relative to their expected Army service time than males. This tendency remained after diagnostic groups 580-629 (Genitourinary System) and 630-678 (Pregnancy and Childbirth) were removed. Problems associated with the circulatory system, digestive system and musculoskeletal system were among the three leading causes of cumulative sick time across years of service. ^
Resumo:
Background and Objective. Ever since the human development index was published in 1990 by the United Nations Development Programme (UNDP), many researchers started searching and corporative studying for more effective methods to measure the human development. Published in 1999, Lai’s “Temporal analysis of human development indicators: principal component approach” provided a valuable statistical way on human developmental analysis. This study presented in the thesis is the extension of Lai’s 1999 research. ^ Methods. I used the weighted principal component method on the human development indicators to measure and analyze the progress of human development in about 180 countries around the world from the year 1999 to 2010. The association of the main principal component obtained from the study and the human development index reported by the UNDP was estimated by the Spearman’s rank correlation coefficient. The main principal component was then further applied to quantify the temporal changes of the human development of selected countries by the proposed Z-test. ^ Results. The weighted means of all three human development indicators, health, knowledge, and standard of living, were increased from 1999 to 2010. The weighted standard deviation for GDP per capita was also increased across years indicated the rising inequality of standard of living among countries. The ranking of low development countries by the main principal component (MPC) is very similar to that by the human development index (HDI). Considerable discrepancy between MPC and HDI ranking was found among high development countries with high GDP per capita shifted to higher ranks. The Spearman’s rank correlation coefficient between the main principal component and the human development index were all around 0.99. All the above results were very close to outcomes in Lai’s 1999 report. The Z test result on temporal analysis of main principal components from 1999 to 2010 on Qatar was statistically significant, but not on other selected countries, such as Brazil, Russia, India, China, and U.S.A.^ Conclusion. To synthesize the multi-dimensional measurement of human development into a single index, the weighted principal component method provides a good model by using the statistical tool on a comprehensive ranking and measurement. Since the weighted main principle component index is more objective because of using population of nations as weight, more effective when the analysis is across time and space, and more flexible when the countries reported to the system has been changed year after year. Thus, in conclusion, the index generated by using weighted main principle component has some advantage over the human development index created in UNDP reports.^
Resumo:
Pancreatic cancer is the 4th most common cause for cancer death in the United States, accompanied by less than 5% five-year survival rate based on current treatments, particularly because it is usually detected at a late stage. Identifying a high-risk population to launch an effective preventive strategy and intervention to control this highly lethal disease is desperately needed. The genetic etiology of pancreatic cancer has not been well profiled. We hypothesized that unidentified genetic variants by previous genome-wide association study (GWAS) for pancreatic cancer, due to stringent statistical threshold or missing interaction analysis, may be unveiled using alternative approaches. To achieve this aim, we explored genetic susceptibility to pancreatic cancer in terms of marginal associations of pathway and genes, as well as their interactions with risk factors. We conducted pathway- and gene-based analysis using GWAS data from 3141 pancreatic cancer patients and 3367 controls with European ancestry. Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the logistic kernel machine (LKM) test, we analyzed 17906 genes defined by University of California Santa Cruz (UCSC) database. Using the likelihood ratio test (LRT) in a logistic regression model, we analyzed 177 pathways and 17906 genes for interactions with risk factors in 2028 pancreatic cancer patients and 2109 controls with European ancestry. After adjusting for multiple comparisons, six pathways were marginally associated with risk of pancreatic cancer ( P < 0.00025): Fc epsilon RI signaling, maturity onset diabetes of the young, neuroactive ligand-receptor interaction, long-term depression (Ps < 0.0002), and the olfactory transduction and vascular smooth muscle contraction pathways (P = 0.0002; Nine genes were marginally associated with pancreatic cancer risk (P < 2.62 × 10−5), including five reported genes (ABO, HNF1A, CLPTM1L, SHH and MYC), as well as four novel genes (OR13C4, OR 13C3, KCNA6 and HNF4 G); three pathways significantly interacted with risk factors on modifying the risk of pancreatic cancer (P < 2.82 × 10−4): chemokine signaling pathway with obesity ( P < 1.43 × 10−4), calcium signaling pathway (P < 2.27 × 10−4) and MAPK signaling pathway with diabetes (P < 2.77 × 10−4). However, none of the 17906 genes tested for interactions survived the multiple comparisons corrections. In summary, our current GWAS study unveiled unidentified genetic susceptibility to pancreatic cancer using alternative methods. These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer, once confirmed, will shed promising light on the prevention and treatment of this disease. ^
Resumo:
Uruguay has some of the strictest tobacco-control laws in Latin America. Despite this, youth smoking rates in Uruguay are amongst the highest in South America. Thus, it is important to identify strategies to prevent youth smoking in Uruguay. The current qualitative research study sought to identify intrapersonal and socioenvironmental factors that are associated with smoking among middle school youth in Uruguay. It also sought to develop potential prevention strategies and media messages that would resonate with youth for a social media campaign. The study was grounded in social cognitive theory and the theory of reasoned action/planned behavior, among other behavioral science theories; anthropological perspectives were also considered. To achieve these goals, 29 group and individual structured interviews were conducted in two private middle schools catering to lower and higher SES youth in Montevideo, Uruguay during the summer of 2012. One hundred and three study participants, including students, parents, and teachers, were interviewed. The structured interviews were recorded, transcribed, translated, back translated, coded and analyzed. The study findings show that positive attitudes towards smoking (i.e. to be seen, to increase status, to ensure women's equality, to looking old, and to service as a rite of passage), delinquent behavior (i.e. transgression/deviant behavior), social norms that support smoking (i.e. peer pressure and modeling, group membership/sense of belonging, parental modeling, and family support), easy access and availability to tobacco (i.e. retails stores) were factors associated with youth smoking. Potential protective factors may include parental support, negative attitudes towards smoking, sports/music, and smoke-free environments. Because study participants are accustomed to government-sponsored strong countermarketing graphic imaging, study participants selected even stronger images and messages as the preferred way to receive tobacco prevention messages. Something Real ("Algo Real") was a theme that resonated with the participants and chosen as the name for the proposed campaign. This campaign was designed as a multiple component intervention that included mass, school base, and family based strategies to prevent tobacco use. Some intervention materials specific to these intervention components were developed to target relevant intrapersonal and socioenvironmental factors identified above. These materials will be tested in future pilot studies and larger scale evaluation with this population, outside the scope of this dissertation. ^
Liver proteome profiling of juvenile Chinese sturgeon (Acipenser sinensis) using GeLC-MS/MS approach
Resumo:
Chinese sturgeon (Acipenser sinensis), mainly distributed in the Yangtze River, has been listed as a grade I protected animal in China because of a dramatic decline in population owing to loss of natural habitat for reproduction and interference by human activities. Understanding the proteome profile of Chinese sturgeon liver would provide an invaluable resource for protecting and increasing the stocks of this species. In this study, we have analyzed proteome profiles of juvenile Chinese sturgeon liver using a one-dimensional gel electrophoresis coupled to LC-MS/MS approach. A total of 1059 proteins and 2084 peptides were identified. The liver proteome was found to be associated with diverse biological processes, cellular components and molecular functions. The proteome profile identified a variety of significant pathways including carbohydrate metabolism, fatty acid metabolism and amino acid metabolism pathways. It also established a network for protein biosynthesis, folding and catabolic processes. The proteome profile established in this study can be used for understanding the development of Chinese sturgeon and studying the molecular mechanisms of action under environmental or chemical stress, providing very useful omics information that can be applied to preserve this species.
Resumo:
Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.
Resumo:
This paper estimates the impact of industrial agglomeration on firm-level productivity in Chinese manufacturing sectors. To account for spatial autocorrelation across regions, we formulate a hierarchical spatial model at the firm level and develop a Bayesian estimation algorithm. A Bayesian instrumental-variables approach is used to address endogeneity bias of agglomeration. Robust to these potential biases, we find that agglomeration of the same industry (i.e. localization) has a productivity-boosting effect, but agglomeration of urban population (i.e. urbanization) has no such effects. Additionally, the localization effects increase with educational levels of employees and the share of intermediate inputs in gross output. These results may suggest that agglomeration externalities occur through knowledge spillovers and input sharing among firms producing similar manufactures.
Resumo:
This paper presents the 2005 Miracle’s team approach to the Ad-Hoc Information Retrieval tasks. The goal for the experiments this year was twofold: to continue testing the effect of combination approaches on information retrieval tasks, and improving our basic processing and indexing tools, adapting them to new languages with strange encoding schemes. The starting point was a set of basic components: stemming, transforming, filtering, proper nouns extraction, paragraph extraction, and pseudo-relevance feedback. Some of these basic components were used in different combinations and order of application for document indexing and for query processing. Second-order combinations were also tested, by averaging or selective combination of the documents retrieved by different approaches for a particular query. In the multilingual track, we concentrated our work on the merging process of the results of monolingual runs to get the overall multilingual result, relying on available translations. In both cross-lingual tracks, we have used available translation resources, and in some cases we have used a combination approach.
Resumo:
The presented work proposes a new approach for anomaly detection. This approach is based on changes in a population of evolving agents under stress. If conditions are appropriate, changes in the population (modeled by the bioindicators) are representative of the alterations to the environment. This approach, based on an ecological view, improves functionally traditional approaches to the detection of anomalies. To verify this assertion, experiments based on Network Intrussion Detection Systems are presented. The results are compared with the behaviour of other bioinspired approaches and machine learning techniques.
Resumo:
The ability to accurately observe the Earth's carbon cycles from space gives scientists an important tool to analyze climate change. Current space-borne Integrated-Path Differential Absorption (IPDA) Iidar concepts have the potential to meet this need. They are mainly based on the pulsed time-offlight principle, in which two high energy pulses of different wavelengths interrogate the atmosphere for its transmission properties and are backscattered by the ground. In this paper, feasibility study results of a Pseudo-Random Single Photon Counting (PRSPC) IPDA lidar are reported. The proposed approach replaces the high energy pulsed source (e.g. a solidstate laser), with a semiconductor laser in CW operation with a similar average power of a few Watts, benefiting from better efficiency and reliability. The auto-correlation property of Pseudo-Random Binary Sequence (PRBS) and temporal shifting of the codes can be utilized to transmit both wavelengths simultaneously, avoiding the beam misalignment problem experienced by pulsed techniques. The envelope signal to noise ratio has been analyzed, and various system parameters have been selected. By restricting the telescopes field-of-view, the dominant noise source of ambient light can be suppressed, and in addition with a low noise single photon counting detector, a retrieval precision of 1.5 ppm over 50 km along-track averaging could be attained. We also describe preliminary experimental results involving a negative feedback Indium Gallium Arsenide (InGaAs) single photon avalanche photodiode and a low power Distributed Feedback laser diode modulated with PRBS driven acoustic optical modulator. The results demonstrate that higher detector saturation count rates will be needed for use in future spacebourne missions but measurement linearity and precision should meet the stringent requirements set out by future Earthobserving missions.
Resumo:
Funded by COST (European Cooperation in Science and Technology) CEH projects. Grant Numbers: NEC05264, NEC05100 Natural Environment Research Council UK. Grant Number: NE/J008001/1 © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Resumo:
We present an approach for evaluating the efficacy of combination antitumor agent schedules that accounts for order and timing of drug administration. Our model-based approach compares in vivo tumor volume data over a time course and offers a quantitative definition for additivity of drug effects, relative to which synergism and antagonism are interpreted. We begin by fitting data from individual mice receiving at most one drug to a differential equation tumor growth/drug effect model and combine individual parameter estimates to obtain population statistics. Using two null hypotheses: (i) combination therapy is consistent with additivity or (ii) combination therapy is equivalent to treating with the more effective single agent alone, we compute predicted tumor growth trajectories and their distribution for combination treated animals. We illustrate this approach by comparing entire observed and expected tumor volume trajectories for a data set in which HER-2/neu-overexpressing MCF-7 human breast cancer xenografts are treated with a humanized, anti-HER-2 monoclonal antibody (rhuMAb HER-2), doxorubicin, or one of five proposed combination therapy schedules.