987 resultados para Protein requirements
Resumo:
The Schistosoma mansoni fatty acid binding protein (FABP), SmA, is a vaccine candidate against, S. mansoni and F hepatica. Previously, we demonstrated the importance of a correct fold to achieve protection in immunized animals after cercariae challenge [[10]. C.R.R. Ramos, R.C.R. Figueredo, T.A. Pertinhez, M.M. Vilar, A.L.T.O. Nascimento, M. Tendler, I. Raw, A. Spisni, P.L. Ho, Gene structure and M20T polymorphism of the Schistosoma mansoni Sm14 fatty acid-binding protein: structural, functional and immunoprotection analysis. J. Biol. Chem. 278 (2003) 12745-12751]. Here we show that the reduction of vaccine efficacy over time is due to protein dimerization and subsequent aggregation. We produced the mutants Sm14-M20(C62S) and Sm14M20(C62V) that, as expected, did not dimerize in SDS-PAGE. Molecular dynamics calculations and unfolding experiments highlighted a higher structural stability of these mutants with respect to the wild-type. In addition, we found that the mutated proteins, after thermal denaturation, refolded to their active native molecular architecture as proved by the recovery of the fatty acid binding ability. Sm14-M20(C62V) turned out to be the more stable form over time, providing the basis to determine the first 3D solution structure of a Sm14 protein in its apo-form. Overall, Sm14-M20(C62V) possesses an improved structural stability over time, an essential feature to preserve its immunization capability and, in experimentally immunized animals, it exhibits a protection effect against S. mansoni cercariae infections comparable to the one obtained with the wild-type protein. These facts indicate this protein as a good lead molecule for large-scale production and for developing an effective Sm14 based anti-helminthes vaccine. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Prediction of carbohydrate fractions using equations from the Cornell Net Carbohydrate and Protein System (CNCPS) is a valuable tool to assess the nutritional value of forages. In this paper these carbohydrate fractions were predicted using data from three sunflower (Helianthus annuus L.) cultivars, fresh or as silage. The CNCPS equations for fractions B(2) and C include measurement of ash and protein-free neutral detergent fibre (NDF) as one of their components. However, NDF lacks pectin and other non-starch polysaccharides that are found in the cell wall (CW) matrix, so this work compared the use of a crude CW preparation instead of NDF in the CNCPS equations. There were no differences in the estimates of fractions B, and C when CW replaced NDF; however there were differences in fractions A and B2. Some of the CNCPS equations could be simplified when using CW instead of NDF Notably, lignin could be expressed as a proportion of DM, rather than on the basis of ash and protein-free NDF, when predicting CNCPS fraction C. The CNCPS fraction B(1) (starch + pectin) values were lower than pectin determined through wet chemistty. This finding, along with the results obtained by the substitution of CW for NDF in the CNCPS equations, suggests that pectin was not part of fraction B(1) but present in fraction A. We suggest that pectin and other non-starch polysaccharides that are dissolved by the neutral detergent solution be allocated to a specific fraction (B2) and that another fraction (B(3)) be adopted for the digestible cell wall carbohydrates.
Resumo:
Organisms of the genera Toxoplasma, Hammondia and Neospora, the Hammondia-like organisms, are closely related coccidian with similarly sized oocysts. Therefore, a diagnosis based on microscopy of oocysts in feces is not a method of choice for species identification of these important parasites. In this paper, we present a polymerase chain reaction coupled with restriction fragment length polymorphism (PCR-RFLP) method to differentially diagnose oocysts of Toxoplasma gondii from oocyst of Hammondia hammondi. Another PCR-RFLP was designed to differentiate oocysts of Hammondia heydorni from oocysts of Neospora spp. Both PCR-RFLP are based on nucleotide sequences of the Hsp70 coding gene. In conclusion, we presented two alternative molecular diagnostic assays that can be successfully applied for the differentiation of oocysts of Hammondia-like organisms shed by felids and canids.
Resumo:
The regulation of gene expression by environmental signals, such as temperature and osmolarity, has been correlated with virulence. In this study, we characterize the protein LipL53 from Leptospira interrogans, previously shown to react with serum sample of individual diagnosed with leptospirosis and to be up-regulated by shift to physiological osmolarity. The recombinant protein was expressed in Escherichia coli system, in insoluble form, recovered by urea solubilization and further refolded by decreasing the denaturing agent concentration during the purification procedure. The secondary structure content of the recombinant LipL53, as assessed by circular dichroism, showed a mixture of beta-strands and alpha-helix. The presence of LipL53 transcript at 28 degrees C was only detected within the virulent strains. However, upon shifted of attenuated cultures of pathogenic strains from 28 degrees C to 37 degrees C and to 39 degrees C, this transcript could also be observed. LipL53 binds laminin, collagen IV, cellular and plasma fibronectin in dose-dependent and saturable manner. Animal challenge studies showed that LipL53, although immunogenic, elicited only partial protection in hamsters. LipL53 is probably surface exposed as seen through immunofluorescence confocal microscopy. Our results suggest that LipL53 is a novel temperature regulated adhesin of L. interrogans that may be relevant in the leptospiral pathogenesis. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63 kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The study of a predicted outer membrane leptospiral protein encoded by the gene LIC12690 in mediating the adhesion process. Methods: The gene was cloned and expressed in Escherichia coli BL21 (SI) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and used to assess its ability to activate human umbilical vein endothelial cells (HUVECs). Results: The recombinant leptospiral protein of 95 kDa, named Lp95, activated E-selectin in a dose-dependent fashion but not the intercellular adhesion molecule 1 (ICAM-1). In addition, we show that pathogenic and non-pathogenic Leptospira are both capable to stimulate endothelium E-selectin and ICAM-1, but the pathogenic L. interrogans serovar Copenhageni strain promotes a statistically significant higher activation than the non-pathogenic L. biflexa serovar Patoc (P < 0.01). The Lp95 was identified in vivo in the renal tubules of animal during experimental infection with L. interrogans. The whole Lp95 as well as its fragments, the C-terminal containing the domain of unknown function (DUF), the N-terminal and the central overlap regions bind laminin and fibronectin ECM molecules, being the binding stronger with the DUF containing fragment. Conclusion: This is the first leptospiral protein capable to mediate the adhesion to ECM components and the activation of HUVECS, thus suggesting its participation in the pathogenesis of Leptospira. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. The search for novel antigens that could be relevant in host-pathogen interactions is being pursued. These antigens have the potential to elicit several activities, including adhesion. This study focused on a hypothetical predicted lipoprotein of Leptospira, encoded by the gene LIC12895, thought to mediate attachment to extracellular matrix (ECM) components. The gene was cloned and expressed in Escherichia coli BL21 Star (DE3)pLys by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. The capacity of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC12895, named Lsa27 (leptospiral surface adhesin, 27 kDa), bound strongly to laminin in a dose-dependent and saturable fashion. Moreover, Lsa27 was recognized by antibodies from serum samples of confirmed leptospirosis specimens in both the initial and the convalescent phases of the disease. Lsa27 is most likely a surface protein of Leptospira as revealed in liquid-phase immunofluorescence assays with living organisms. Taken together, these data indicate that this newly identified membrane protein is expressed during natural infection and may play a role in mediating adhesion of L. interrogans to its host.
Resumo:
Introduction: This study evaluated the healing of mandibular condylar fracture in rats submitted to experimental and protein undernutrition (8% of protein) by means of histological analysis. Material: Forty-five adult Wistar rats were divided into three groups of 15 animals: a fracture group, who were submitted to condylar fracture with no changes in diet; an undernourished fracture group, who were submitted to a low protein diet and condylar fracture: an undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were created under general anaesthesia. The histological study comprised fracture site and temporomandibular joint evaluations. Results: The undernourished fracture group showed significant weight loss. There was a marked decrease in the values of serum proteins and albumin in the undernourished fracture group. Histological analysis showed that protein undernutrition lead to atrophy of the condylar fibrocartilage. Fractures in undernutrition presented a delay in callus formation due to more extensive devitalized bone areas, and after 3 months there were still bone formation areas, while fibrous ankylosis occurred in the articular space. Conclusion: It was concluded that mandibular condyle fractures in rats with protein undernutrition had impaired callus formation, as well as fibrous ankylosis into the temporomandibular joint. (C) 2010 European Association for Cranio-Maxillo-Facial Surgery.
Resumo:
The aim of this study was to evaluate the effects of infrared diode laser phototherapy (LP) on tissues of the submandibular gland (SMG) and parotid gland (PG). Wistar rats were randomly divided into experimental (A and B) and control (C) groups. A diode laser, 808 nm wavelength, in continuous wave mode, was applied to the PG, SMG and sublingual gland in the experimental groups on two consecutive days. The doses were 4 J/cm(2) and 8 J/cm(2), and total energy was 7 J and 14 J, respectively. The power output (500 mW) and power density (277 mW/cm(2)) were the same for both experimental groups. In order to visualize the area irradiated by the infrared laser, we used a red pilot beam (650 nm) with 3 mW maximum power for the experimental groups. For the control group, the red pilot beam was the only device used. The SMG and PG were removed after 1 week of the first irradiation. Total protein concentration, amylase, peroxidase, catalase and lactate dehydrogenase assays were performed, as well as histological analysis. Statistical tests revealed significant increase in the total protein concentration for groups A and B in the parotid glands (P < 0.05). Based on the results of this study, LP altered the total protein concentration in rats` parotid glands.
Resumo:
P>Mucoepidermoid carcinoma (MEC), the most common primary salivary malignancy, shows great variability in clinical behaviour, thus demanding investigation to identify of prognostic markers. Since Warburg`s studies, unrestricted cell growth during tumorigenesis has been linked to altered metabolism, implying hypoxic stimulation of glycolysis and diminished contribution of mitochondrial oxidative phosphorylation to cellular ATP supply. Hypothesizing that the study of MEC metabolic status could lead to the discovery of prognostic markers, we investigated by immunohistochemistry the expression of glucose transporter 1 (Glut-1), mitochondrial antigen and peroxiredoxin I (Prx I) in samples of MEC from different histological grades. Our results showed that mitochondrial antigen and Prx I were expressed in the majority of the MEC cases independent of the histological grade. In contrast Glut-1 expression increased significantly as the tumours became more aggressive. These results suggested that oxidative phosphorylation may contribute to ATP supply in all stages of MEC progression, and that the relative contribution of glycolysis over mitochondria for cellular ATP supply increases during MEC progression, favouring growth under low oxygen concentration. In addition, the observed high Prx I protein levels could provide protection to tumour cells against reactive oxygen species generated as a consequence of mitochondrial function and hypoxia-reoxygenation cycling. Altogether our findings suggest that upregulation of Glut-1 and Prx I constitute successful adaptive strategies of MEC cells conferring a growth advantage over normal salivary gland cells in the unstable oxygenation tumour environment.
Resumo:
Squamous cell carcinoma of the oral cavity (OSCC) is a malignancy characterized by a high degree of local aggression and metastasis to cervical lymph nodes. Tetraspanins are proteins with functional roles in a wide array of cellular processes and are reported to be associated with tumor progression. The present study investigated the expression of the CD9, CD37, CD63, CD81 and CD82 tetraspanins in OSCC using immunohistochemistry (IHC) and quantitative Real Time-PCR (qRT-PCR). Tissue microarray (TMA) analysis of samples from 179 cases of OSCC and 10 normal samples oral mucosa were evaluated immunomorphologically. We analyzed CD9 and CD82 expression by qRT-PCR in 66 OSCC cases and 4 normal samples of oral mucosa. Expression of CD63, CD37 and CD81 was not detected in the samples studied. CD82 was downregulated or negative in 127 of 179 (80%) specimens; no correlation was observed between CD82 expression, clinicopathological parameters, disease-free survival and 5-year overall survival. CD9 expression was downregulated or negative in 75 of 129 (42%) OSCC samples. Loss of CD9 expression in OSCC samples correlated with the incidence of lymph node metastasis (p = 0.017). Disease-free survival and the 5-year overall survival of patients with downregulated or negative CD9 expression were significantly lower than in patients with positive CD9 expression (p = 0.010 and p = 0.071, respectively). No correlation was found between CD9 or CD82 expression and clinicopathological parameters by qRT-PCR. Our results suggest that the downregulation or lack of expression of the CD9 protein might indicate a more aggressive of OSCC. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Oncogenic Wnt/beta-catenin signaling occurs in numerous types of cancers, but little is known about the role of the Wnt protein family member, WNT-5A, in lip carcinogenesis. The aim of this study was to investigate WNT-5A, beta-catenin, and matrix metalloproteinase (MMP)-3 protein expression in actinic cheilitis (AC), and lip squamous cell carcinoma (LSCC). Methods: Twenty-one cases of AC, and fifty-one cases of LSCC were analyzed, with normal lip mucosa used as a control. Qualitative and semi-quantitative analyses of WNT-5A, beta-catenin, and MMP-3 immunostaining pattern and cellular distribution were performed. Results: WNT-5A was observed in more than 50% of the cells, scattered in all layers of AC, in contrast to the absence of immunostaining in normal lip mucosa. AC presented a higher level of WNT-5A expression than LSCC (P = 0.0289, Fisher test), while MMP-3 immunoexpression was statistically more significant in LSCC than in AC (P = 0.0285, Fisher test). Immunolabeling of beta-catenin protein was differentially distributed between samples; the majority of AC cases (61.90%) demonstrated a membranous-cytoplasmic pattern, while a considerable number of LSCC cases (29.41%) revealed a cytoplasmic pattern, instead of the usual membranous pattern. Conclusions: The present results suggest that WNT-5A may be an important marker during initial events of AC malignant transformation, in which non-canonical and canonical Wnt/beta-catenin signaling pathways could be involved. Additionally, WNT-5A might recruit other events in LSCC, such as MMP-3 protein synthesis, as its presence is increased in established malignant processes without beta-catenin dependency.
Resumo:
Glial fibrillary acidic protein (GFAP) is a member of the intermediary filament protein family. It is an important component of astrocytes and a known diagnostic marker of glial differentiation. GFAP is expressed in other neural tumors and pleomorphic adenoma and, less frequently, in cartilage tumors, chordomas, and soft tissue myoepitheliomas. The aim of this study was to evaluate the role of GFAP and its reliability in nonglial tumors as an immunohistochemical marker. We evaluated GFAP gene and protein expression using Q-PCR and immunohistochemistry, respectively, in 81 and 387 cases of soft tissue, bone tumors, and salivary pleomorphic adenomas. Immunohistochemistry staining for GFAP was observed in all osteosarcomas (8 cases), all pleomorphic adenomas (7 cases), in 5 of 6 soft tissue myoepitheliomas, and in 21 of 76 chondrosarcomas. By Q-PCR, GFAP was highly expressed in pleomorphic adenomas and, to a lesser extent, chondrosarcomas, soft tissue myoepitheliomas, and chondroblastic osteosarcomas. The results that we obtained by immunohistochemistry and Q-PCR were well correlated. GFAP is a potential marker for tumors with cartilaginous differentiation, supported by evidence that GFAP is expressed in certain cases of myoepithelial tumors by immunohistochemistry, including soft tissue myoepitheliomas, which are related to cartilaginous differentiation. These findings contribute significantly to the diagnosis of soft tissue myoepitheliomas with cartilaginous differentiation and chondroblastic osteosarcoma in mesenchymal tumors. Modern Pathology ( 2009) 22, 1321-1327; doi: 10.1038/modpathol.2009.99; published online 7 August 2009
Resumo:
Aim: The aim of the present study was to assess the influence of the chemical characteristics and roughness of titanium surfaces on the viability, proliferation and differentiation of osteoblast-like cells cultured in a medium supplemented with recombinant human bone morphogenetic protein-7 (rhBMP-7). Material and methods: Osteo-1 cells were grown on titanium disks presenting with the following surfaces: (1) machined, (2) coarse grit-blasted and acid-attacked (SLA) and (3) chemically modified SLA (SLAmod) in the absence or presence of 20 ng/ml rhBMP-7 in culture medium. The viability and number of osteo-1 cells were evaluated after 24 h. Analyses of total protein content (TP) and alkaline phosphatase (AP) activity at 7, 14 and 21 days, collagen content at 7 and 21 days and mineralized matrix formation at 21 days were performed. Results: Cell viability (P=0.5516), cell number (P=0.3485), collagen content (P=0.1165) and mineralized matrix formation (P=0.5319) were not affected by the different surface configurations or by the addition of rhBMP-7 to the medium. Osteo-1 cells cultured on SLA surfaces showed a significant increase in TP at 21 days. The ALPase/TP ratio (P=0.00001) was affected by treatment and time. Conclusion: The results suggest that the addition of rhBMP-7 to the culture medium did not exert any effect on the viability, proliferation or differentiation of osteoblast-like cells grown on the different surfaces tested. All titanium surfaces analyzed allowed the complete expression of the osteoblast phenotype such as matrix mineralization by osteo-1 cells.