980 resultados para Protein concentrations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have cloned and sequenced cDNA for human karyopherin β2, also known as transportin. In a solution binding assay, recombinant β2 bound directly to recombinant nuclear mRNA-binding protein A1. Binding was inhibited by a peptide representing A1’s previously characterized M9 nuclear localization sequence (NLS), but not by a peptide representing a classical NLS. As previously shown for karyopherin β1, karyopherin β2 bound to several nucleoporins containing characteristic peptide repeat motifs. In a solution binding assay, both β1 and β2 competed with each other for binding to immobilized repeat nucleoporin Nup98. In digitonin-permeabilized cells, β2 was able to dock A1 at the nuclear rim and to import it into the nucleoplasm. At low concentrations of β2, there was no stimulation of import by the exogenous addition of the GTPase Ran. However, at higher concentrations of β2 there was marked stimulation of import by Ran. Import was inhibited by the nonhydrolyzable GTP analog guanylyl imidodiphosphate by a Ran mutant that is unable to hydrolyze GTP and also by wheat germ agglutinin. Consistent with the solution binding results, karyopherin β2 inhibited karyopherin α/β1-mediated import of a classical NLS containing substrate and, vice versa, β1 inhibited β2-mediated import of A1 substrate, suggesting that the two import pathways merge at the level of docking of β1 and β2 to repeat nucleoporins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic anomalies in protein folding can result from changes of the kinetic ground states (D, I, and N), changes of the protein folding transition state, or both. The 102-residue protein U1A has a symmetrically curved chevron plot which seems to result mainly from changes of the transition state. At low concentrations of denaturant the transition state occurs early in the folding reaction, whereas at high denaturant concentration it moves close to the native structure. In this study we use this movement to follow continuously the formation and growth of U1A's folding nucleus by φ analysis. Although U1A's transition state structure is generally delocalized and displays a typical nucleation–condensation pattern, we can still resolve a sequence of folding events. However, these events are sufficiently coupled to start almost simultaneously throughout the transition state structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the pH dependence of the dynamics of conformational fluctuations of green fluorescent protein mutants EGFP (F64L/S65T) and GFP-S65T in small ensembles of molecules in solution by using fluorescence correlation spectroscopy (FCS). FCS utilizes time-resolved measurements of fluctuations in the molecular fluorescence emission for determination of the intrinsic dynamics and thermodynamics of all processes that affect the fluorescence. Fluorescence excitation of a bulk solution of EGFP decreases to zero at low pH (pKa = 5.8) paralleled by a decrease of the absorption at 488 nm and an increase at 400 nm. Protonation of the hydroxyl group of Tyr-66, which is part of the chromophore, induces these changes. When FCS is used the fluctuations in the protonation state of the chromophore are time resolved. The autocorrelation function of fluorescence emission shows contributions from two chemical relaxation processes as well as diffusional concentration fluctuations. The time constant of the fast, pH-dependent chemical process decreases with pH from 300 μs at pH 7 to 45 μs at pH 5, while the time-average fraction of molecules in a nonfluorescent state increases to 80% in the same range. A second, pH-independent, process with a time constant of 340 μs and an associated fraction of 13% nonfluorescent molecules is observed between pH 8 and 11, possibly representing an internal proton transfer process and associated conformational rearrangements. The FCS data provide direct measures of the dynamics and the equilibrium properties of the protonation processes. Thus FCS is a convenient, intrinsically calibrated method for pH measurements in subfemtoliter volumes with nanomolar concentrations of EGFP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Threshold mechanisms of transcriptional activation are thought to be critical for translating continuous gradients of extracellular signals into discrete all-or-none cellular responses, such as mitogenesis and differentiation. Indeed, unequivocal evidence for a graded transcriptional response in which the concentration of inducer directly correlates with the level of gene expression in individual eukaryotic cells is lacking. By using a novel binary tetracycline regulatable retroviral vector system, we observed a graded rather than a threshold mechanism of transcriptional activation in two different model systems. When polyclonal populations of cells were analyzed at the single cell level, a dose-dependent, stepwise increase in expression of the reporter gene, green fluorescent protein (GFP), was observed by fluorescence-activated cell sorting. These data provide evidence that, in addition to the generally observed all-or-none switch, the basal transcription machinery also can respond proportionally to changes in concentration of extracellular inducers and trancriptional activators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substitutions or deletions of domain II loop residues of Bacillus thuringiensis δ-endotoxin CryIAb were constructed using site-directed mutagenesis techniques to investigate their functional roles in receptor binding and toxicity toward gypsy moth (Lymantria dispar). Substitution of loop 2 residue N372 with Ala or Gly (N372A, N372G) increased the toxicity against gypsy moth larvae 8-fold and enhanced binding affinity to gypsy moth midgut brush border membrane vesicles (BBMV) ≈4-fold. Deletion of N372 (D3), however, substantially reduced toxicity (>21 times) as well as binding affinity, suggesting that residue N372 is involved in receptor binding. Interestingly, a triple mutant, DF-1 (N372A, A282G and L283S), has a 36-fold increase in toxicity to gypsy moth neonates compared with wild-type toxin. The enhanced activity of DF-1 was correlated with higher binding affinity (18-fold) and binding site concentrations. Dissociation binding assays suggested that the off-rate of the BBMV-bound mutant toxins was similar to that of the wild type. However, DF-1 toxin bound 4 times more than the wild-type and N372A toxins, and it was directly correlated with binding affinity and potency. Protein blots of gypsy moth BBMV probed with labeled N372A, DF-1, and CryIAb toxins recognized a common 210-kDa protein, indicating that the increased activity of the mutants was not caused by binding to additional receptor(s). The improved binding affinity of N372A and DF-1 suggest that a shorter side chain at these loops may fit the toxin more efficiently to the binding pockets. These results offer an excellent model system for engineering δ-endotoxins with higher potency and wider spectra of target pests by improving receptor binding interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has suggested that the chromosomally encoded TetA(L) transporter of Bacillus subtilis, for which no physiological function had been shown earlier, not only confers resistance to low concentrations of tetracycline but is also a multifunctional antiporter protein that has dominant roles in both Na+- and K+-dependent pH homeostasis and in Na+ resistance during growth at alkaline pH. To rigorously test this hypothesis, TetA(L) has been purified with a hexahistidine tag at its C terminus and reconstituted into proteoliposomes. The TetA(L)–hexahistidine proteoliposomes exhibit high activities of tetracycline–cobalt/H+, Na+/H+, and K+/H+ antiport in an assay in which an outwardly directed proton gradient is artificially imposed and solute uptake is monitored. Tetracycline uptake depends on the presence of cobalt and vice versa, with the cosubstrates being transported in a 1:1 ratio. Evidence for the electrogenicity of both tetracycline–cobalt/H+ and Na+/H+ antiports is presented. K+ and Li+ inhibit Na+ uptake, but there is little cross-inhibition between Na+ and tetracycline–cobalt uptake activities. The results strongly support the conclusion that TetA(L) is a multifunctional antiporter. They expand the roster of such porters to encompass one with a complex organic substrate and monovalent cation substrates that may have distinct binding domains, and provide the first functional reconstitution of a member of the 14-transmembrane segment transporter family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to the well-characterized GTP-dependent nuclear transport observed in permeabilized cells, we detected a mode of nuclear transport that was GTP-independent at elevated cytoplasmic calcium concentrations. Nuclear transport under these conditions was blocked by calmodulin inhibitors. Recombinant calmodulin restored ATP-dependent nuclear transport in the absence of cytosol. Calmodulin-dependent transport was inhibited by wheat germ agglutinin consistent with transport proceeding through nuclear pores. We propose that release of intracellular calcium stores upon cell activation inhibits GTP-dependent nuclear transport; the elevated cytosolic calcium then acts through calmodulin to stimulate the novel GTP-independent mode of import.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small all-β protein tendamistat folds and unfolds with two-state kinetics. We determined the volume changes associated with the folding process by performing kinetic and equilibrium measurements at variable pressure between 0.1 and 100 MPa (1 to 1,000 bar). GdmCl-induced equilibrium unfolding transitions reveal that the volume of the native state is increased by 41.4 ± 2.0 cm3/mol relative to the unfolded state. This value is virtually independent of denaturant concentration. The use of a high-pressure stopped-flow instrument enabled us to measure the activation volumes for the refolding (ΔVf0‡) and unfolding reaction (ΔVu0‡) over a broad range of GdmCl concentrations. The volume of the transition state is 60% native-like (ΔVf0‡ = 25.0 ± 1.2 cm3/mol) in the absence of denaturant, indicating partial solvent accessibility of the core residues. The volume of the transition state increases linearly with denaturant concentration and exceeds the volume of the native state above 6 M GdmCl. This result argues for a largely desolvated transition state with packing deficiencies at high denaturant concentrations and shows that the structure of the transition state depends strongly on the experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various pathogenic bacteria, viruses, and protozoan bind to glycosaminoglycan-based receptors on host cells and initiate an infection. Sporozoites of Plasmodium predominantly express circumsporozoite (CS) protein on their surface, which binds to heparan sulfate proteoglycans on liver cell surface that subsequently leads to malaria. Here we show that the interaction of free heparin with this parasite ligand has the potential to be a critical component of invasion. CS protein of P. falciparum contains four cysteines at positions 361, 365, 396, and 401. In this study, all four cysteine residues were mutagenized to alanine both individually and in different combinations. Conversion of cysteine 396 to alanine (protein CS3) led to a 10-fold increase in the binding activity of the protein to HepG2 cells. Replacement of cysteines at positions 361, 365, and 401 either alone or in different combinations led to a near total loss of binding. Surprisingly, activity in these inactive mutants could be effectively restored in the presence of submolar concentrations of heparin. Heparin also up-regulated binding of CS3 at submolar concentrations with respect to the protein but down-regulated binding when present in excess. Given the significantly different concentrations of heparin in different organs of the host and the in vitro results described here one can consider in vivo ramifications of this phenomenon for pathogen targeting of specific organs and for the functional effects of antigenic variation on receptor ligand interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local rates of cerebral protein synthesis (lCPSleu) were measured with the quantitative autoradiographic [1-14C]leucine method in a genetic mouse model (Pahenu2) of phenylketonuria. As in the human disease, Pahenu2 mice have a mutation in the gene for phenylalanine hydroxylase. We compared adult homozygous (HMZ) and heterozygous (HTZ) Pahenu2 mice with the background strain (BTBR). Arterial plasma concentrations of phenylalanine (Phe) were elevated in both HMZ and HTZ mutants by 21 times and 38%, respectively. In the total acid-soluble pool in brain concentrations of Phe were higher and other neutral amino acids lower in HMZ mice compared with either HTZ or BTBR mice indicating a partial saturation of the l-amino acid carrier at the blood brain barrier by the elevated plasma Phe concentrations. In a series of steady-state experiments, the contribution of leucine from the arterial plasma to the tRNA-bound pool in brain was found to be statistically significantly reduced in HMZ mice compared with the other groups, indicating that a greater fraction of leucine in the precursor pool for protein synthesis is derived from protein degradation. We found reductions in lCPSleu of about 20% throughout the brain in the HMZ mice compared with the other two groups, but no reductions in brain concentrations of tRNA-bound neutral amino acids. Our results in the mouse model suggest that in untreated phenylketonuria in adults, the partial saturation of the l-amino acid transporter at the blood–brain barrier may not underlie a reduction in cerebral protein synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrimeric G proteins mediate the earliest step in cell responses to external events by linking cell surface receptors to intracellular signaling pathways. Gz is a member of the Gi family of G proteins that is prominently expressed in platelets and brain. Here, we show that deletion of the α subunit of Gz in mice: (i) impairs platelet aggregation by preventing the inhibition of cAMP formation normally seen at physiologic concentrations of epinephrine, and (ii) causes the mice to be more resistant to fatal thromboembolism. Loss of Gzα also results in greatly exaggerated responses to cocaine, reduces the analgesic effects of morphine, and abolishes the effects of widely used antidepressant drugs that act as catecholamine reuptake inhibitors. These changes occur despite the presence of other Giα family members in the same cells and are not accompanied by detectable compensatory changes in the level of expression of other G protein subunits. Therefore, these results provide insights into receptor selectivity among G proteins and a model for understanding platelet function and the effects of psychoactive drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer models were used to examine whether and under what conditions the multimeric protein complex is inhibited by high concentrations of one of its components—an effect analogous to the prozone phenomenon in precipitin tests. A series of idealized simple “ball-and-stick” structures representing small oligomeric complexes of protein molecules formed by reversible binding reactions were analyzed to determine the binding steps leading to each structure. The equilibrium state of each system was then determined over a range of starting concentrations and Kds and the steady-state concentration of structurally complete oligomer calculated for each situation. A strong inhibitory effect at high concentrations was shown by any protein molecule forming a bridge between two or more separable parts of the complex. By contrast, proteins linked to the outside of the complex by a single bond showed no inhibition whatsoever at any concentration. Nonbridging, multivalent proteins in the body of the complex could show an inhibitory effect or not depending on the structure of the complex and the strength of its bonds. On the basis of this study, we suggest that the prozone phenomenon will occur widely in living cells and that it could be a crucial factor in the regulation of protein complex formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Receptors activate adenylyl cyclases through the Gαs subunit. Previous studies from our laboratory have shown in certain cell types that express adenylyl cyclase 6 (AC6), heterologous desensitization included reduction of the capability of adenylyl cyclases to be stimulated by Gαs. Here we further analyze protein kinase A (PKA) effects on adenylyl cyclases. PKA treatment of recombinant AC6 in insect cell membranes results in a selective loss of stimulation by high (>10 nM) concentrations of Gαs. Similar treatment of AC1 or AC2 did not affect Gαs stimulation. Conversion of Ser-674 in AC6 to an Ala blocks PKA phosphorylation and PKA-mediated loss of Gαs stimulation. A peptide encoding the region 660–682 of AC6 blocks stimulation of AC6 and AC2 by high concentrations of Gαs. Substitution of Ser-674 to Asp in the peptide renders the peptide ineffective, indicating that the region 660–682 of AC6 is involved in regulation of signal transfer from Gαs. This region contains a conserved motif present in most adenylyl cyclases; however, the PKA phosphorylation site is unique to members of the AC6 family. These observations suggest a mechanism of how isoform selective regulatory diversity can be obtained within conserved regions involved in signal communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To analyse serum concentrations of brain specific S100 protein in patients with Creutzfeldt-Jakob disease and in controls.