769 resultados para Probabilistic neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficiency in the mutual fund (MF), is one of the issues that has attracted many investors in countries with advanced financial market for many years. Due to the need for frequent study of MF's efficiency in short-term periods, investors need a method that not only has high accuracy, but also high speed. Data envelopment analysis (DEA) is proven to be one of the most widely used methods in the measurement of the efficiency and productivity of decision making units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper uses neural network back-ropagation DEA in measurement of mutual funds efficiency and shows the requirements, in the proposed method, for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of a large set of MFs. Copyright © 2014 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is devoted to the description of hybrid pattern recognition method developed by research groups from Russia, Armenia and Spain. The method is based upon logical correction over the set of conventional neural networks. Output matrices of neural networks are processed according to the potentiality principle which allows increasing of recognition reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern enterprises work in highly dynamic environment. Thus, the developing of company strategy is of crucial importance. It determines the surviving of the enterprise and its evolution. Adapting the desired management goal in accordance with the environment changes is a complex problem. In the present paper, an approach for solving this problem is suggested. It is based on predictive control philosophy. The enterprise is modelled as a cybernetic system and the future plant response is predicted by a neural network model. The predictions are passed to an optimization routine, which attempts to minimize the quadratic performance criterion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two jamming cancellation algorithms are developed based on a stable solution of least squares problem (LSP) provided by regularization. They are based on filtered singular value decomposition (SVD) and modifications of the Greville formula. Both algorithms allow an efficient hardware implementation. Testing results on artificial data modeling difficult real-world situations are also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a modification for the high-order neural network (HONN) is presented. Third order networks are considered for achieving translation, rotation and scale invariant pattern recognition. They require however much storage and computation power for the task. The proposed modified HONN takes into account a priori knowledge of the binary patterns that have to be learned, achieving significant gain in computation time and memory requirements. This modification enables the efficient computation of HONNs for image fields of greater that 100 × 100 pixels without any loss of pattern information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental comparison of information features used by neural network is performed. The sensing method was used. Suboptimal classifier agreeable to the gaussian model of the training data was used as a probe. Neural nets with architectures of perceptron and feedforward net with one hidden layer were used. The experiments were carried out with spatial ultrasonic data, which are used for car’s passenger safety system neural controller learning. In this paper we show that a neural network doesn’t fully make use of gaussian components, which are first two moment coefficients of probability distribution. On the contrary, the network can find more complicated regularities inside data vectors and thus shows better results than suboptimal classifier. The parallel connection of suboptimal classifier improves work of modular neural network whereas its connection to the network input improves the specialization effect during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is proposed an agent approach for creation of intelligent intrusion detection system. The system allows detecting known type of attacks and anomalies in user activity and computer system behavior. The system includes different types of intelligent agents. The most important one is user agent based on neural network model of user behavior. Proposed approach is verified by experiments in real Intranet of Institute of Physics and Technologies of National Technical University of Ukraine "Kiev Polytechnic Institute”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that basic ROC properties which are one of experimental findings underpinning dual-process models of recognition memory can be explained within our one-factor NNAMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper new non-conventional growing neural network is proposed. It coincides with the Cascade- Correlation Learning Architecture structurally, but uses ortho-neurons as basic structure units, which can be adjusted using linear tuning procedures. As compared with conventional approximating neural networks proposed approach allows significantly to reduce time required for weight coefficients adjustment and the training dataset size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article proposes a Bayesian neural network approach to determine the risk of re-intervention after endovascular aortic aneurysm repair surgery. The target of proposed technique is to determine which patients have high chance to re-intervention (high-risk patients) and which are not (low-risk patients) after 5 years of the surgery. Two censored datasets relating to the clinical conditions of aortic aneurysms have been collected from two different vascular centers in the United Kingdom. A Bayesian network was first employed to solve the censoring issue in the datasets. Then, a back propagation neural network model was built using the uncensored data of the first center to predict re-intervention on the second center and classify the patients into high-risk and low-risk groups. Kaplan-Meier curves were plotted for each group of patients separately to show whether there is a significant difference between the two risk groups. Finally, the logrank test was applied to determine whether the neural network model was capable of predicting and distinguishing between the two risk groups. The results show that the Bayesian network used for uncensoring the data has improved the performance of the neural networks that were built for the two centers separately. More importantly, the neural network that was trained with uncensored data of the first center was able to predict and discriminate between groups of low risk and high risk of re-intervention after 5 years of endovascular aortic aneurysm surgery at center 2 (p = 0.0037 in the logrank test).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many organic compounds cause an irreversible damage to human health and the ecosystem and are present in water resources. Among these hazard substances, phenolic compounds play an important role on the actual contamination. Utilization of membrane technology is increasing exponentially in drinking water production and waste water treatment. The removal of organic compounds by nanofiltration membranes is characterized not only by molecular sieving effects but also by membrane-solute interactions. Influence of the sieving parameters (molecular weight and molecular diameter) and the physicochemical interactions (dissociation constant and molecular hydrophobicity) on the membrane rejection of the organic solutes were studied. The molecular hydrophobicity is expressed as logarithm of octanol-water partition coefficient. This paper proposes a method used that can be used for symbolic knowledge extraction from a trained neural network, once they have been trained with the desired performance and is based on detect the more important variables in problems where exist multicolineality among the input variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the world, scientific studies increase day by day and computer programs facilitate the human’s life. Scientists examine the human’s brain’s neural structure and they try to be model in the computer and they give the name of artificial neural network. For this reason, they think to develop more complex problem’s solution. The purpose of this study is to estimate fuel economy of an automobile engine by using artificial neural network (ANN) algorithm. Engine characteristics were simulated by using “Neuro Solution” software. The same data is used in MATLAB to compare the performance of MATLAB is such a problem and show its validity. The cylinder, displacement, power, weight, acceleration and vehicle production year are used as input data and miles per gallon (MPG) are used as target data. An Artificial Neural Network model was developed and 70% of data were used as training data, 15% of data were used as testing data and 15% of data is used as validation data. In creating our model, proper neuron number is carefully selected to increase the speed of the network. Since the problem has a nonlinear structure, multi layer are used in our model.