946 resultados para Prestressed concrete construction.
Resumo:
The growth of the construction industry worldwide poses a serious concern on the sustainability of the building material production chain, mainly due to the carbon emissions related to the production of Portland cement. On the other hand, valuable materials from waste streams, particularly from the metallurgical industry, are not used at their full potential. Alkali activated concrete (AAC) has emerged in the last years as a promising alternative to traditional Portland cement based concrete for some applications. However, despite showing remarkable strength and durability potential, its utilisation is not widespread, mainly due to the lack of broadly accepted standards for the selection of suitable mix recipes fulfilling design requirements, in particular workability, setting time and strength. In this paper, a contribution towards the design development of AAC synthetized from pulverised fuel ash (60%) and ground granulated blast furnace slag (40%) activated with a solution of sodium hydroxide and sodium silicate is proposed. Results from a first batch of mixes indicated that water content influences the setting time and that paste content is a key parameter for controlling strength development and workability. The investigation indicated that, for the given raw materials and activator compositions, a minimum water to solid (w/s) ratio of 0.37 was needed for an initial setting time of about 1 hour. Further work with paste content in the range of 30% to 33% determined the relationship between workability and strength development and w/s ratio and paste content. Strengths in the range of 50 - 60 MPa were achieved.
Resumo:
Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland cement. These binders consist of a class of inorganic polymer formed mainly by the reaction between an alkaline solution and an aluminosilicate source. Precursor materials for this reaction can be found in secondary material streams from different industrial sectors, from energy to agro-alimentary. However, the suitability of these materials in developing the polymerisation reaction must be assessed through a detailed chemical and physical characterisation, ensuring the availability of required chemical species in the appropriate quantity and physical state. Furthermore, the binder composition needs to be defined in terms of proper alkali activation dosages, water content in the mix, and curing conditions. The mix design must satisfy mechanical requirements and compliance to desired engineering properties (workability, setting time) for ensuring the suitability of the binder in replacing Portland cement in concrete applications. This paper offers a structured approach for the development of secondary material-based binders, from their identification to mix design and production procedure development. Essential features of precursor material can be determined through chemical and physical characterisation methods and advanced microscope techniques. Important mixing parameters and binder properties requirements are examined and some examples of developed binders are reported.
Resumo:
Strengthening reinforced concrete (RC) structures by externally bonded FRP composites has been widely used for static loading and seismic retrofitting since 1990s. More recently many studies on strengthening concrete and masonry structures with externally bonded FRP for improved blast and impact resistance in protective engineering have also been conducted. The bond behaviour between the FRP and concrete plays a critical role in a strengthening system with externally bonded FRP. However, the understanding of how the bond between FRP and concrete performs under high strain rate is severely limited. Due to the dynamic characteristics of blast and impact loading, the bond behaviour between FRP and concrete under such loading is very different from that under static loading. This paper presents a study on the dynamic bond-slip behaviour based on both the numerical analysis and test results. A dynamic bond-slip model is proposed in this paper.
Resumo:
Strengthening RC structures with near-surface mounted (NSM) fibre reinforced polymer (FRP) composites has a number of advantages compared with that with externally bonded (EB) FRP sheets/plates. As with EB FRP, the performance of the bond between NSM FRP and concrete is one of the key factors affecting the behaviour of the strengthened structure. This paper presents a numerical investigation into the behaviour of NSM FRP loaded at its both ends to simulate the NSM FRP-toconcrete bond between two adjacent cracks in RC members. The main objective of this study is to quantitatively clarify the effect of the bondline damage during slip reversal on the ultimate load (bond strength). The results show that the bondline damage has a significant effect on the load-carrying capacity of the NSM FRP-to-concrete bonded interface and should be considered in FE modeling of the interface.
Resumo:
Concrete cover separation is a common failure mode of reinforced concrete (RC) beams strengthened with a fibre-reinforced polymer (FRP) plate bonded to the tension face (FRP-plated RC beams). Plate-end FRP U-jackets have previously been explored as a mitigation measure to delay or suppress concrete cover separation, although its effectiveness needs further clarification. The paper presents the first systemic experimental study on the use of FRP U-jackets of different forms for mitigating the concrete cover separation failure. A total of ten full-scale FRP-plated RC beams were tested. The test results show that both the ultimate load and the ductility of the beams were enhanced by the U-jackets. Among the forms of U-jackets explored, those inclined at 45o are the most effective.
Resumo:
Research has shown that fibre reinforced polymer (FRP) wraps are effective for strengthening concrete columns for increased axial and flexural load and deformation capacity, and this technique is now used around the world. The experimental study presented in this paper is focused on the mechanics of FRP confined concrete, with a particular emphasis on the influence of the unconfined concrete compressive strength on confinement effectiveness and hoop strain efficiency. An experimental programme was undertaken to study the compressive strength and stress-strain behaviour of unconfined and FRP confined concrete cylinders of different concrete strength but otherwise similar mix designs, aggregates, and constituents. This was accomplished by varying only the water-to-cement ratio during concrete mixing operations. Through the use of high-resolution digital image correlation to measure both axial and hoop strains, the observations yield insights into the mechanics of FRP confinement of concretes of similar composition but with varying unconfined concrete compressive strength.
Resumo:
Alkali activated binders, based on ash and slag, also known as geopolymers, can play a key role in reducing the carbon footprint of the construction sector by replacing ordinary Portland cement in some concretes. Since 1970s, research effort has been ongoing in many research institutions. In this study, pulverized fuel ash (pfa) from a UK power plant, ground granulated blast furnace slag (ggbs) and combinations of the two have been investigated as geopolymer binders for concrete applications. Activators used were sodium hydroxide and sodium silicate solutions. Mortars with sand/binder ratio of 2.75 with several pfa and ggbs combinations have been mixed and tested. The optimization of alkali dosage (defined as the Na2O/binder mass ratio) and modulus (defined as the Na2O/SiO2 mass ratio) resulted in strengths in excess of 70 MPa for tested mortars. Setting time and workability have been considered for the identification of the best combination of pfa/ggbs and alkali activator dosage for different precast concrete products. Geopolymer concrete building blocks have been replicated in laboratory and a real scale factory trial has been successfully carried out. Ongoing microstructural characterization is aiming to identify reaction products arising from pfa/ggbs combinations.
Resumo:
Bridge construction responds to the need for environmentally friendly design of motorways and facilitates the passage through sensitive natural areas and the bypassing of urban areas. However, according to numerous research studies, bridge construction presents substantial budget overruns. Therefore, it is necessary early in the planning process for the decision makers to have reliable estimates of the final cost based on previously constructed projects. At the same time, the current European financial crisis reduces the available capital for investments and financial institutions are even less willing to finance transportation infrastructure. Consequently, it is even more necessary today to estimate the budget of high-cost construction projects -such as road bridges- with reasonable accuracy, in order for the state funds to be invested with lower risk and the projects to be designed with the highest possible efficiency. In this paper, a Bill-of-Quantities (BoQ) estimation tool for road bridges is developed in order to support the decisions made at the preliminary planning and design stages of highways. Specifically, a Feed-Forward Artificial Neural Network (ANN) with a hidden layer of 10 neurons is trained to predict the superstructure material quantities (concrete, pre-stressed steel and reinforcing steel) using the width of the deck, the adjusted length of span or cantilever and the type of the bridge as input variables. The training dataset includes actual data from 68 recently constructed concrete motorway bridges in Greece. According to the relevant metrics, the developed model captures very well the complex interrelations in the dataset and demonstrates strong generalisation capability. Furthermore, it outperforms the linear regression models developed for the same dataset. Therefore, the proposed cost estimation model stands as a useful and reliable tool for the construction industry as it enables planners to reach informed decisions for technical and economic planning of concrete bridge projects from their early implementation stages.
Resumo:
Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.
Resumo:
The main objective of the study presented in this paper was to investigate the feasibility using support vector machines (SVM) for the prediction of the fresh properties of self-compacting concrete. The radial basis function (RBF) and polynomial kernels were used to predict these properties as a function of the content of mix components. The fresh properties were assessed with the slump flow, T50, T60, V-funnel time, Orimet time, and blocking ratio (L-box). The retention of these tests was also measured at 30 and 60 min after adding the first water. The water dosage varied from 188 to 208 L/m3, the dosage of superplasticiser (SP) from 3.8 to 5.8 kg/m3, and the volume of coarse aggregates from 220 to 360 L/m3. In total, twenty mixes were used to measure the fresh state properties with different mixture compositions. RBF kernel was more accurate compared to polynomial kernel based support vector machines with a root mean square error (RMSE) of 26.9 (correlation coefficient of R2 = 0.974) for slump flow prediction, a RMSE of 0.55 (R2 = 0.910) for T50 (s) prediction, a RMSE of 1.71 (R2 = 0.812) for T60 (s) prediction, a RMSE of 0.1517 (R2 = 0.990) for V-funnel time prediction, a RMSE of 3.99 (R2 = 0.976) for Orimet time prediction, and a RMSE of 0.042 (R2 = 0.988) for L-box ratio prediction, respectively. A sensitivity analysis was performed to evaluate the effects of the dosage of cement and limestone powder, the water content, the volumes of coarse aggregate and sand, the dosage of SP and the testing time on the predicted test responses. The analysis indicates that the proposed SVM RBF model can gain a high precision, which provides an alternative method for predicting the fresh properties of SCC.